Suppr超能文献

用于乳腺组织鉴别的自体荧光、漫反射和拉曼光谱的比较。

Comparison of autofluorescence, diffuse reflectance, and Raman spectroscopy for breast tissue discrimination.

作者信息

Majumder Shovan K, Keller Matthew D, Boulos Fouad I, Kelley Mark C, Mahadevan-Jansen Anita

机构信息

Vanderbilt University, Department of Biomedical Engineering, Nashville, Tennessee 37235, USA.

出版信息

J Biomed Opt. 2008 Sep-Oct;13(5):054009. doi: 10.1117/1.2975962.

Abstract

For a given diagnostic problem, important considerations are the relative performances of the various optical biopsy techniques. A comparative evaluation of fluorescence, diffuse reflectance, combined fluorescence and diffuse reflectance, and Raman spectroscopy in discriminating different histopathologic categories of human breast tissues is reported. Optical spectra were acquired ex vivo from a total of 74 breast tissue samples belonging to 4 distinct histopathologic categories: invasive ductal carcinoma (IDC), ductal carcinoma in situ (DCIS), fibroadenoma (FA), and normal breast tissue. A probability-based multivariate statistical algorithm capable of direct multiclass classification was developed to analyze the diagnostic content of the spectra measured from the same set of breast tissue sites with these different techniques. The algorithm uses the theory of nonlinear maximum representation and discrimination feature for feature extraction, and the theory of sparse multinomial logistic regression for classification. The results reveal that the performance of Raman spectroscopy is superior to that of all others in classifying the breast tissues into respective histopathologic categories. The best classification accuracy was observed to be approximately 99%, 94%, 98%, and 100% for IDC, DCIS, FA, and normal breast tissues, respectively, on the basis of leave-one-sample-out cross-validation, with an overall accuracy of approximately 99%.

摘要

对于给定的诊断问题,重要的考虑因素是各种光学活检技术的相对性能。本文报道了对荧光、漫反射、荧光与漫反射联合以及拉曼光谱在鉴别人类乳腺组织不同组织病理学类别方面的比较评估。从总共74个属于4种不同组织病理学类别的乳腺组织样本中离体采集光谱:浸润性导管癌(IDC)、原位导管癌(DCIS)、纤维腺瘤(FA)和正常乳腺组织。开发了一种基于概率的多变量统计算法,该算法能够进行直接多类分类,以分析用这些不同技术从同一组乳腺组织部位测量的光谱的诊断内容。该算法使用非线性最大表示和判别特征理论进行特征提取,并使用稀疏多项逻辑回归理论进行分类。结果表明,在将乳腺组织分类到各自的组织病理学类别方面,拉曼光谱的性能优于所有其他技术。基于留一法交叉验证,观察到IDC、DCIS、FA和正常乳腺组织的最佳分类准确率分别约为99%、94%、98%和100%,总体准确率约为99%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验