Suppr超能文献

用于增强成像深度的1.7微米长波长光学相干断层扫描技术。

Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth.

作者信息

Sharma Utkarsh, Chang Ernest W, Yun Seok H

机构信息

Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA.

出版信息

Opt Express. 2008 Nov 24;16(24):19712-23. doi: 10.1364/oe.16.019712.

Abstract

Multiple scattering in a sample presents a significant limitation to achieve meaningful structural information at deeper penetration depths in optical coherence tomography (OCT). Previous studies suggest that the spectral region around 1.7 microm may exhibit reduced scattering coefficients in biological tissues compared to the widely used wavelengths around 1.3 mum. To investigate this long-wavelength region, we developed a wavelength-swept laser at 1.7 microm wavelength and conducted OCT or optical frequency domain imaging (OFDI) for the first time in this spectral range. The constructed laser is capable of providing a wide tuning range from 1.59 to 1.75 microm over 160 nm. When the laser was operated with a reduced tuning range over 95 nm at a repetition rate of 10.9 kHz and an average output power of 12.3 mW, the OFDI imaging system exhibited a sensitivity of about 100 dB and axial and lateral resolution of 24 mum and 14 mum, respectively. We imaged several phantom and biological samples using 1.3 mum and 1.7 microm OFDI systems and found that the depth-dependent signal decay rate is substantially lower at 1.7 microm wavelength in most, if not all samples. Our results suggest that this imaging window may offer an advantage over shorter wavelengths by increasing the penetration depths as well as enhancing image contrast at deeper penetration depths where otherwise multiple scattered photons dominate over ballistic photons.

摘要

在光学相干断层扫描(OCT)中,样品中的多次散射对在更深穿透深度获取有意义的结构信息构成了重大限制。先前的研究表明,与广泛使用的1.3μm左右的波长相比,1.7μm左右的光谱区域在生物组织中的散射系数可能会降低。为了研究这个长波长区域,我们开发了一种波长为1.7μm的扫频激光器,并首次在该光谱范围内进行了OCT或光学频域成像(OFDI)。所构建的激光器能够在160nm范围内提供从1.59到1.75μm的宽调谐范围。当激光器在95nm的减小调谐范围内以10.9kHz的重复频率和12.3mW的平均输出功率运行时,OFDI成像系统的灵敏度约为100dB,轴向分辨率和横向分辨率分别为24μm和14μm。我们使用1.3μm和1.7μm的OFDI系统对几个仿体和生物样品进行了成像,发现在大多数(如果不是所有)样品中,1.7μm波长处与深度相关的信号衰减率要低得多。我们的结果表明,这个成像窗口可能比短波长具有优势,因为它可以增加穿透深度,并在更深的穿透深度增强图像对比度,在这些深度,否则多次散射光子会比弹道光子占主导地位。

相似文献

1
Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth.
Opt Express. 2008 Nov 24;16(24):19712-23. doi: 10.1364/oe.16.019712.
5
High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs.
Opt Express. 2008 Feb 18;16(4):2547-54. doi: 10.1364/oe.16.002547.
6
In vivo, high-resolution, three-dimensional imaging of port wine stain microvasculature in human skin.
Lasers Surg Med. 2013 Dec;45(10):628-32. doi: 10.1002/lsm.22194. Epub 2013 Oct 24.
9
High power wavelength linearly swept mode locked fiber laser for OCT imaging.
Opt Express. 2008 Sep 1;16(18):14095-105. doi: 10.1364/oe.16.014095.

引用本文的文献

1
Simulation Study on the Effect of HIFU Irradiation Frequency and Duty Cycle Combination Parameter Optimization on Thermal Lesion of Biological Tissue.
J Biomed Phys Eng. 2025 Aug 1;15(4):341-352. doi: 10.31661/jbpe.v0i0.2412-1864. eCollection 2025 Aug.
2
Imaging the human cochlea using 1.3-m and 1.7-m optical coherence tomography.
J Biomed Opt. 2025 Apr;30(4):046007. doi: 10.1117/1.JBO.30.4.046007. Epub 2025 Apr 17.
4
The sound of blood: photoacoustic imaging in blood analysis.
Med Nov Technol Devices. 2023 Jun;18. doi: 10.1016/j.medntd.2023.100219. Epub 2023 Mar 4.
6
Rapid chemically selective 3D imaging in the mid-infrared.
Optica. 2021 Jul 20;8(7):995-1002. doi: 10.1364/OPTICA.426199. Epub 2021 Jul 7.
7
Wave-based optical coherence elastography: The 10-year perspective.
Prog Biomed Eng (Bristol). 2022 Jan;4(1). doi: 10.1088/2516-1091/ac4512. Epub 2022 Jan 14.
8
Review on Laser Technology in Intravascular Imaging and Treatment.
Aging Dis. 2022 Feb 1;13(1):246-266. doi: 10.14336/AD.2021.0711. eCollection 2022 Feb.
9
1.7-Micron Optical Coherence Tomography Angiography for Characterization of Skin Lesions-A Feasibility Study.
IEEE Trans Med Imaging. 2021 Sep;40(9):2507-2512. doi: 10.1109/TMI.2021.3081066. Epub 2021 Aug 31.
10
Characterizing thrombus with multiple red blood cell compositions by optical coherence tomography attenuation coefficient.
J Biophotonics. 2021 Mar;14(3):e202000364. doi: 10.1002/jbio.202000364. Epub 2020 Dec 17.

本文引用的文献

1
Polarization Effects in Optical Coherence Tomography of Various Biological Tissues.
IEEE J Sel Top Quantum Electron. 1999 Jul-Aug;5(4):1200-1204. doi: 10.1109/2944.796347.
4
Light propagation in tissues with controlled optical properties.
J Biomed Opt. 1997 Oct;2(4):401-17. doi: 10.1117/12.281502.
5
Multiple scattering in optical coherence microscopy.
Appl Opt. 1995 Sep 1;34(25):5699-707. doi: 10.1364/AO.34.005699.
6
Measurement of optical properties of biological tissues by low-coherence reflectometry.
Appl Opt. 1993 Oct 20;32(30):6032-42. doi: 10.1364/AO.32.006032.
7
Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range.
Appl Opt. 1993 Jul 1;32(19):3531-40. doi: 10.1364/AO.32.003531.
8
Optical Constants of Water in the 200-nm to 200-microm Wavelength Region.
Appl Opt. 1973 Mar 1;12(3):555-63. doi: 10.1364/AO.12.000555.
10
In vivo optical frequency domain imaging of human retina and choroid.
Opt Express. 2006 May 15;14(10):4403-11. doi: 10.1364/oe.14.004403.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验