Suppr超能文献

具有仿生倒置胶体晶体几何结构的3D支架构建的人骨髓体外类似物。

In vitro analog of human bone marrow from 3D scaffolds with biomimetic inverted colloidal crystal geometry.

作者信息

Nichols Joan E, Cortiella Joaquin, Lee Jungwoo, Niles Jean A, Cuddihy Meghan, Wang Shaopeng, Bielitzki Joseph, Cantu Andrea, Mlcak Ron, Valdivia Esther, Yancy Ryan, McClure Matthew L, Kotov Nicholas A

机构信息

Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA.

出版信息

Biomaterials. 2009 Feb;30(6):1071-9. doi: 10.1016/j.biomaterials.2008.10.041. Epub 2008 Nov 29.

Abstract

In vitro replicas of bone marrow can potentially provide a continuous source of blood cells for transplantation and serve as a laboratory model to examine human immune system dysfunctions and drug toxicology. Here we report the development of an in vitro artificial bone marrow based on a 3D scaffold with inverted colloidal crystal (ICC) geometry mimicking the structural topology of actual bone marrow matrix. To facilitate adhesion of cells, scaffolds were coated with a layer of transparent nanocomposite. After seeding with hematopoietic stem cells (HSCs), ICC scaffolds were capable of supporting expansion of CD34+ HSCs with B-lymphocyte differentiation. Three-dimensional organization was shown to be critical for production of B cells and antigen-specific antibodies. Functionality of bone marrow constructs was confirmed by implantation of matrices containing human CD34+ cells onto the backs of severe combined immunodeficiency (SCID) mice with subsequent generation of human immune cells.

摘要

骨髓的体外复制品有可能为移植提供持续的血细胞来源,并作为一个实验室模型来研究人类免疫系统功能障碍和药物毒理学。在此,我们报告了一种基于具有倒置胶体晶体(ICC)几何结构的三维支架开发的体外人工骨髓,该支架模仿了实际骨髓基质的结构拓扑。为促进细胞黏附,支架涂覆有一层透明纳米复合材料。在用造血干细胞(HSCs)接种后,ICC支架能够支持CD34+ HSCs的扩增并伴有B淋巴细胞分化。三维结构对于B细胞和抗原特异性抗体的产生至关重要。通过将含有人类CD34+细胞的基质植入重症联合免疫缺陷(SCID)小鼠背部,随后产生人类免疫细胞,证实了骨髓构建体的功能。

相似文献

1
In vitro analog of human bone marrow from 3D scaffolds with biomimetic inverted colloidal crystal geometry.
Biomaterials. 2009 Feb;30(6):1071-9. doi: 10.1016/j.biomaterials.2008.10.041. Epub 2008 Nov 29.
2
Cord blood-hematopoietic stem cell expansion in 3D fibrin scaffolds with stromal support.
Biomaterials. 2012 Oct;33(29):6987-97. doi: 10.1016/j.biomaterials.2012.06.029. Epub 2012 Jul 15.
3
Fabrication of Bioactive Inverted Colloidal Crystal Scaffolds Using Expanded Polystyrene Beads.
Tissue Eng Part C Methods. 2020 Mar;26(3):143-155. doi: 10.1089/ten.TEC.2019.0333. Epub 2020 Mar 6.
4
Co-cultured hBMSCs and HUVECs on human bio-derived bone scaffolds provide support for the long-term ex vivo culture of HSC/HPCs.
J Biomed Mater Res A. 2016 May;104(5):1221-30. doi: 10.1002/jbm.a.35656. Epub 2016 Feb 12.
5
Adhesion and growth of human bone marrow mesenchymal stem cells on precise-geometry 3D organic-inorganic composite scaffolds for bone repair.
Mater Sci Eng C Mater Biol Appl. 2015 Mar;48:301-9. doi: 10.1016/j.msec.2014.12.007. Epub 2014 Dec 5.
6
Endosteal-like extracellular matrix expression on melt electrospun written scaffolds.
Acta Biomater. 2017 Apr 1;52:145-158. doi: 10.1016/j.actbio.2016.12.040. Epub 2016 Dec 22.
7
Laminated electrospun nHA/PHB-composite scaffolds mimicking bone extracellular matrix for bone tissue engineering.
Mater Sci Eng C Mater Biol Appl. 2017 Mar 1;72:341-351. doi: 10.1016/j.msec.2016.11.070. Epub 2016 Nov 24.

引用本文的文献

2
Immune organoids: emerging platforms for modeling and analyzing human adaptive immunity.
Front Immunol. 2025 Aug 6;16:1632117. doi: 10.3389/fimmu.2025.1632117. eCollection 2025.
4
Superior bone regenerative properties of carbonate apatite with locational bone-active factors through an inorganic process.
Regen Ther. 2024 Sep 9;26:760-766. doi: 10.1016/j.reth.2024.08.021. eCollection 2024 Jun.
7
Rational design of hydrogels for immunomodulation.
Regen Biomater. 2022 Feb 22;9:rbac009. doi: 10.1093/rb/rbac009. eCollection 2022.
8
The extracellular matrix of hematopoietic stem cell niches.
Adv Drug Deliv Rev. 2022 Feb;181:114069. doi: 10.1016/j.addr.2021.114069. Epub 2021 Nov 25.
9
Biomechanical cues as master regulators of hematopoietic stem cell fate.
Cell Mol Life Sci. 2021 Aug;78(16):5881-5902. doi: 10.1007/s00018-021-03882-y. Epub 2021 Jul 7.
10
Bioengineering the Bone Marrow Vascular Niche.
Front Cell Dev Biol. 2021 Apr 28;9:645496. doi: 10.3389/fcell.2021.645496. eCollection 2021.

本文引用的文献

1
Polyelectrolyte Films Boost Progenitor Cell Differentiation into Endothelium-like Monolayers.
Adv Mater. 2008 Jul 17;20(14):2674-8. doi: 10.1002/adma.200702418. Epub 2008 Jun 2.
2
The osteogenic differentiation of rat muscle-derived stem cells in vivo within in situ-forming chitosan scaffolds.
Biomaterials. 2008 Nov;29(33):4420-8. doi: 10.1016/j.biomaterials.2008.08.005. Epub 2008 Aug 28.
3
Poly(lactic-co-glycolic acid) bone scaffolds with inverted colloidal crystal geometry.
Tissue Eng Part A. 2008 Oct;14(10):1639-49. doi: 10.1089/ten.tea.2007.0142.
4
Chemicals that modulate stem cell differentiation.
Proc Natl Acad Sci U S A. 2008 May 27;105(21):7467-71. doi: 10.1073/pnas.0802825105. Epub 2008 May 14.
5
Technology insight: adult mesenchymal stem cells for osteoarthritis therapy.
Nat Clin Pract Rheumatol. 2008 Jul;4(7):371-80. doi: 10.1038/ncprheum0816. Epub 2008 May 13.
6
Three-dimensional cell culture matrices: state of the art.
Tissue Eng Part B Rev. 2008 Mar;14(1):61-86. doi: 10.1089/teb.2007.0150.
7
Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication.
Trends Biotechnol. 2008 Jun;26(6):338-44. doi: 10.1016/j.tibtech.2008.03.001. Epub 2008 Apr 20.
8
Electrospun nanofiber scaffolds for rapid and rich capture of bone marrow-derived hematopoietic stem cells.
Biomaterials. 2008 May;29(13):2096-103. doi: 10.1016/j.biomaterials.2008.01.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验