Chen Chin-Pei, Ganguly Abhijit, Wang Chen-Hao, Hsu Chih-Wei, Chattopadhyay Surojit, Hsu Yu-Kuei, Chang Ying-Chih, Chen Kuei-Hsien, Chen Li-Chyong
Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan.
Anal Chem. 2009 Jan 1;81(1):36-42. doi: 10.1021/ac800986q.
We demonstrate a rationale for using GaN nanowires (GaNNWs) in label-free DNA-sensing using dual routes of electrochemical impedance spectroscopy (EIS) and photoluminescence (PL) measurements, employing a popular target DNA with anthrax lethal factor (LF) sequence. The in situ EIS reveals that both high surface area and surface band-bending in the nanowires, providing more binding sites and surface-enhanced charge transfer, respectively, are responsible for the enhanced sensitivity to surface-immobilized DNA molecules. The net electron-transfer resistance can be readily deconvoluted into two components because of the coexistence of two interfaces, GaN/DNA and DNA/electrolyte interfaces, in series. Interestingly, the former, decreasing with LF concentration (C(LF)), serves as a signature for the extent of hybridization, while the latter as a fingerprint for DNA modification. For PL-sensing, the band-edge emission of GaNNWs serves as a parameter for DNA modification, which quenches exponentially with C(LF) as the incident light is increasingly blocked from reaching the core nanowire by rapidly developing a UV-absorbing DNA sheath at high C(LF). Furthermore, successful application for detection of "hotspot" mutations, related to the human p53 tumor-suppressor gene, revealed excellent selectivity and specificity, down to picomolar concentration, even in the current unoptimized sensor design/condition, and in the presence of mutations and noncomplementary strands, suggesting the potential pragmatic application in complex clinical samples.
我们展示了使用氮化镓纳米线(GaNNWs)进行无标记DNA传感的基本原理,采用了电化学阻抗谱(EIS)和光致发光(PL)测量的双重途径,使用了一种含有炭疽致死因子(LF)序列的常见目标DNA。原位EIS表明,纳米线中的高表面积和表面能带弯曲分别提供了更多的结合位点和表面增强的电荷转移,这是对表面固定的DNA分子增强灵敏度的原因。由于GaN/DNA和DNA/电解质两个界面串联共存,净电子转移电阻可以很容易地解卷积为两个分量。有趣的是,前者随LF浓度(C(LF))降低,可作为杂交程度的标志,而后者则作为DNA修饰的指纹。对于PL传感,GaNNWs的带边发射作为DNA修饰的一个参数,随着C(LF)的增加,入射光越来越多地被快速形成的紫外吸收DNA鞘阻挡而无法到达核心纳米线,从而呈指数级猝灭。此外,成功应用于检测与人类p53肿瘤抑制基因相关的“热点”突变,即使在当前未优化的传感器设计/条件下,以及存在突变和非互补链的情况下,也显示出优异的选择性和特异性,检测下限可达皮摩尔浓度,这表明其在复杂临床样本中具有潜在的实际应用价值。