Mérens Audrey, Matrat Stéphanie, Aubry Alexandra, Lascols Christine, Jarlier Vincent, Soussy Claude-James, Cavallo Jean-Didier, Cambau Emmanuelle
Université Paris, IFR, Bacteriologie, Créteil, France.
J Bacteriol. 2009 Mar;191(5):1587-94. doi: 10.1128/JB.01205-08. Epub 2008 Dec 5.
MfpA(Mt) and QnrB4 are two newly characterized pentapeptide repeat proteins (PRPs) that interact with DNA gyrase. The mfpA(Mt) gene is chromosome borne in Mycobacterium tuberculosis, while qnrB4 is plasmid borne in enterobacteria. We expressed and purified the two PRPs and compared their effects on DNA gyrase, taking into account host specificity, i.e., the effect of MfpA(Mt) on M. tuberculosis gyrase and the effect of QnrB4 on Escherichia coli gyrase. Whereas QnrB4 inhibited E. coli gyrase activity only at concentrations higher than 30 microM, MfpA(Mt) inhibited all catalytic reactions of the M. tuberculosis gyrase described for this enzyme (supercoiling, cleavage, relaxation, and decatenation) with a 50% inhibitory concentration of 2 microM. We showed that the D87 residue in GyrA has a major role in the MfpA(Mt)-gyrase interaction, as D87H and D87G substitutions abolished MfpA(Mt) inhibition of M. tuberculosis gyrase catalytic reactions, while A83S modification did not. Since MfpA(Mt) and QnrB4 have been involved in resistance to fluoroquinolones, we measured the inhibition of the quinolone effect in the presence of each PRP. QnrB4 reversed quinolone inhibition of E. coli gyrase at 0.1 microM as described for other Qnr proteins, but MfpA(Mt) did not modify M. tuberculosis gyrase inhibition by fluoroquinolones. Crossover experiments showed that MfpA(Mt) also inhibited E. coli gyrase function, while QnrB4 did not reverse quinolone inhibition of M. tuberculosis gyrase. In conclusion, our in vitro experiments showed that MfpA(Mt) and QnrB4 exhibit opposite effects on DNA gyrase and that these effects are protein and species specific.
MfpA(结核分枝杆菌)和QnrB4是两种新鉴定的与DNA促旋酶相互作用的五肽重复蛋白(PRP)。mfpA(结核分枝杆菌)基因位于结核分枝杆菌的染色体上,而qnrB4基因位于肠道细菌的质粒上。我们表达并纯化了这两种PRP,并比较了它们对DNA促旋酶的影响,同时考虑到宿主特异性,即MfpA(结核分枝杆菌)对结核分枝杆菌促旋酶的影响以及QnrB4对大肠杆菌促旋酶的影响。虽然QnrB4仅在浓度高于30微摩尔时才抑制大肠杆菌促旋酶活性,但MfpA(结核分枝杆菌)抑制了针对该酶描述的结核分枝杆菌促旋酶的所有催化反应(超螺旋、切割、松弛和解连环),其50%抑制浓度为2微摩尔。我们表明,GyrA中的D87残基在MfpA(结核分枝杆菌)-促旋酶相互作用中起主要作用,因为D87H和D87G取代消除了MfpA(结核分枝杆菌)对结核分枝杆菌促旋酶催化反应的抑制,而A83S修饰则没有。由于MfpA(结核分枝杆菌)和QnrB4与氟喹诺酮耐药性有关,我们测量了在每种PRP存在下对喹诺酮作用的抑制。如其他Qnr蛋白所述,QnrB4在0.1微摩尔时逆转了喹诺酮对大肠杆菌促旋酶的抑制,但MfpA(结核分枝杆菌)并未改变氟喹诺酮对结核分枝杆菌促旋酶的抑制。交叉实验表明,MfpA(结核分枝杆菌)也抑制大肠杆菌促旋酶功能,而QnrB4并未逆转喹诺酮对结核分枝杆菌促旋酶的抑制。总之,我们的体外实验表明,MfpA(结核分枝杆菌)和QnrB4对DNA促旋酶表现出相反的作用,并且这些作用是蛋白质和物种特异性的。