Suppr超能文献

通过工程化酿酒酵母菌株加速利用葡萄糖、木糖和阿拉伯糖混合物的新型进化工程方法。

Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains.

作者信息

Wisselink H Wouter, Toirkens Maurice J, Wu Qixiang, Pronk Jack T, van Maris Antonius J A

机构信息

Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.

出版信息

Appl Environ Microbiol. 2009 Feb;75(4):907-14. doi: 10.1128/AEM.02268-08. Epub 2008 Dec 12.

Abstract

Lignocellulosic feedstocks are thought to have great economic and environmental significance for future biotechnological production processes. For cost-effective and efficient industrial processes, complete and fast conversion of all sugars derived from these feedstocks is required. Hence, simultaneous or fast sequential fermentation of sugars would greatly contribute to the efficiency of production processes. One of the main challenges emerging from the use of lignocellulosics for the production of ethanol by the yeast Saccharomyces cerevisiae is efficient fermentation of D-xylose and L-arabinose, as these sugars cannot be used by natural S. cerevisiae strains. In this study, we describe the first engineered S. cerevisiae strain (strain IMS0003) capable of fermenting mixtures of glucose, xylose, and arabinose with a high ethanol yield (0.43 g g(-1) of total sugar) without formation of the side products xylitol and arabinitol. The kinetics of anaerobic fermentation of glucose-xylose-arabinose mixtures were greatly improved by using a novel evolutionary engineering strategy. This strategy included a regimen consisting of repeated batch cultivation with repeated cycles of consecutive growth in three media with different compositions (glucose, xylose, and arabinose; xylose and arabinose; and only arabinose) and allowed rapid selection of an evolved strain (IMS0010) exhibiting improved specific rates of consumption of xylose and arabinose. This evolution strategy resulted in a 40% reduction in the time required to completely ferment a mixture containing 30 g liter(-1) glucose, 15 g liter(-1) xylose, and 15 g liter(-1) arabinose.

摘要

木质纤维素原料被认为对未来的生物技术生产过程具有重大的经济和环境意义。对于具有成本效益和高效的工业过程,需要将这些原料衍生的所有糖类进行完全且快速的转化。因此,糖类的同步或快速顺序发酵将极大地提高生产过程的效率。利用木质纤维素通过酿酒酵母生产乙醇所面临的主要挑战之一是对D-木糖和L-阿拉伯糖的高效发酵,因为天然的酿酒酵母菌株不能利用这些糖类。在本研究中,我们描述了首个能够以高乙醇产量(每克总糖0.43克)发酵葡萄糖、木糖和阿拉伯糖混合物且不形成木糖醇和阿拉伯糖醇副产物的工程酿酒酵母菌株(菌株IMS0003)。通过使用一种新颖的进化工程策略,葡萄糖-木糖-阿拉伯糖混合物的厌氧发酵动力学得到了极大改善。该策略包括一个方案,即通过在三种不同组成的培养基(葡萄糖、木糖和阿拉伯糖;木糖和阿拉伯糖;以及仅阿拉伯糖)中连续生长的重复循环进行重复分批培养,从而能够快速筛选出一株进化菌株(IMS0010),其木糖和阿拉伯糖的比消耗速率有所提高。这种进化策略使完全发酵含有30克/升葡萄糖、15克/升木糖和15克/升阿拉伯糖的混合物所需的时间减少了40%。

相似文献

2
Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering.
Appl Microbiol Biotechnol. 2010 Aug;87(5):1803-11. doi: 10.1007/s00253-010-2609-0. Epub 2010 May 7.
4
Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.
Appl Environ Microbiol. 2007 Aug;73(15):4881-91. doi: 10.1128/AEM.00177-07. Epub 2007 Jun 1.
6
Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.
J Ind Microbiol Biotechnol. 2017 Mar;44(3):387-395. doi: 10.1007/s10295-016-1899-3. Epub 2017 Jan 9.
8
Galacturonic acid inhibits the growth of Saccharomyces cerevisiae on galactose, xylose, and arabinose.
Appl Environ Microbiol. 2012 Aug;78(15):5052-9. doi: 10.1128/AEM.07617-11. Epub 2012 May 11.

引用本文的文献

3
Integration of metabolism and regulation reveals rapid adaptability to growth on non-native substrates.
Cell Chem Biol. 2023 Sep 21;30(9):1135-1143.e5. doi: 10.1016/j.chembiol.2023.06.009. Epub 2023 Jul 7.
4
D-xylose accelerated death of pentose metabolizing Saccharomyces cerevisiae.
Biotechnol Biofuels Bioprod. 2023 Apr 17;16(1):67. doi: 10.1186/s13068-023-02320-4.
5
Improved enzyme production on corncob hydrolysate by a xylose-evolved cell factory.
J Food Sci Technol. 2022 Apr;59(4):1280-1287. doi: 10.1007/s13197-021-05135-z. Epub 2021 May 13.
8
Positive-feedback, ratiometric biosensor expression improves high-throughput metabolite-producer screening efficiency in yeast.
Synth Biol (Oxf). 2017 Jan 29;2(1):ysw002. doi: 10.1093/synbio/ysw002. eCollection 2017 Jan.

本文引用的文献

1
Codon-optimized bacterial genes improve L-Arabinose fermentation in recombinant Saccharomyces cerevisiae.
Appl Environ Microbiol. 2008 Apr;74(7):2043-50. doi: 10.1128/AEM.02395-07. Epub 2008 Feb 8.
2
Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant.
Appl Environ Microbiol. 2008 Mar;74(6):1748-56. doi: 10.1128/AEM.00186-08. Epub 2008 Feb 1.
3
Engineering complex phenotypes in industrial strains.
Biotechnol Prog. 2008 Jan-Feb;24(1):38-47. doi: 10.1021/bp0701214. Epub 2007 Oct 3.
4
Innovations and green chemistry.
Chem Rev. 2007 Jun;107(6):2169-73. doi: 10.1021/cr078380v.
5
Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose.
Appl Environ Microbiol. 2007 Aug;73(15):4881-91. doi: 10.1128/AEM.00177-07. Epub 2007 Jun 1.
6
Towards industrial pentose-fermenting yeast strains.
Appl Microbiol Biotechnol. 2007 Apr;74(5):937-53. doi: 10.1007/s00253-006-0827-2. Epub 2007 Feb 9.
7
Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status.
Antonie Van Leeuwenhoek. 2006 Nov;90(4):391-418. doi: 10.1007/s10482-006-9085-7. Epub 2006 Oct 11.
10
Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain.
FEMS Yeast Res. 2005 Jul;5(10):925-34. doi: 10.1016/j.femsyr.2005.04.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验