Marraffini Luciano A, Sontheimer Erik J
Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.
Science. 2008 Dec 19;322(5909):1843-5. doi: 10.1126/science.1165771.
Horizontal gene transfer (HGT) in bacteria and archaea occurs through phage transduction, transformation, or conjugation, and the latter is particularly important for the spread of antibiotic resistance. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci confer sequence-directed immunity against phages. A clinical isolate of Staphylococcus epidermidis harbors a CRISPR spacer that matches the nickase gene present in nearly all staphylococcal conjugative plasmids. Here we show that CRISPR interference prevents conjugation and plasmid transformation in S. epidermidis. Insertion of a self-splicing intron into nickase blocks interference despite the reconstitution of the target sequence in the spliced mRNA, which indicates that the interference machinery targets DNA directly. We conclude that CRISPR loci counteract multiple routes of HGT and can limit the spread of antibiotic resistance in pathogenic bacteria.
细菌和古菌中的水平基因转移(HGT)通过噬菌体转导、转化或接合发生,而后者对于抗生素抗性的传播尤为重要。成簇规律间隔短回文重复序列(CRISPR)位点赋予针对噬菌体的序列定向免疫。表皮葡萄球菌的一个临床分离株含有一个与几乎所有葡萄球菌接合质粒中存在的切口酶基因相匹配的CRISPR间隔序列。我们在此表明,CRISPR干扰可阻止表皮葡萄球菌中的接合和质粒转化。将一个自我剪接内含子插入切口酶可阻断干扰,尽管在剪接后的mRNA中靶序列得以重建,这表明干扰机制直接靶向DNA。我们得出结论,CRISPR位点可对抗HGT的多种途径,并可限制病原菌中抗生素抗性的传播。