Suppr超能文献

CRISPR干扰通过靶向DNA限制葡萄球菌中的水平基因转移。

CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA.

作者信息

Marraffini Luciano A, Sontheimer Erik J

机构信息

Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA.

出版信息

Science. 2008 Dec 19;322(5909):1843-5. doi: 10.1126/science.1165771.

Abstract

Horizontal gene transfer (HGT) in bacteria and archaea occurs through phage transduction, transformation, or conjugation, and the latter is particularly important for the spread of antibiotic resistance. Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci confer sequence-directed immunity against phages. A clinical isolate of Staphylococcus epidermidis harbors a CRISPR spacer that matches the nickase gene present in nearly all staphylococcal conjugative plasmids. Here we show that CRISPR interference prevents conjugation and plasmid transformation in S. epidermidis. Insertion of a self-splicing intron into nickase blocks interference despite the reconstitution of the target sequence in the spliced mRNA, which indicates that the interference machinery targets DNA directly. We conclude that CRISPR loci counteract multiple routes of HGT and can limit the spread of antibiotic resistance in pathogenic bacteria.

摘要

细菌和古菌中的水平基因转移(HGT)通过噬菌体转导、转化或接合发生,而后者对于抗生素抗性的传播尤为重要。成簇规律间隔短回文重复序列(CRISPR)位点赋予针对噬菌体的序列定向免疫。表皮葡萄球菌的一个临床分离株含有一个与几乎所有葡萄球菌接合质粒中存在的切口酶基因相匹配的CRISPR间隔序列。我们在此表明,CRISPR干扰可阻止表皮葡萄球菌中的接合和质粒转化。将一个自我剪接内含子插入切口酶可阻断干扰,尽管在剪接后的mRNA中靶序列得以重建,这表明干扰机制直接靶向DNA。我们得出结论,CRISPR位点可对抗HGT的多种途径,并可限制病原菌中抗生素抗性的传播。

相似文献

1
CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA.
Science. 2008 Dec 19;322(5909):1843-5. doi: 10.1126/science.1165771.
2
Self versus non-self discrimination during CRISPR RNA-directed immunity.
Nature. 2010 Jan 28;463(7280):568-71. doi: 10.1038/nature08703. Epub 2010 Jan 13.
3
Impact of Different Target Sequences on Type III CRISPR-Cas Immunity.
J Bacteriol. 2016 Jan 11;198(6):941-50. doi: 10.1128/JB.00897-15.
4
Analysis of the features of 45 identified CRISPR loci in 32 Staphylococcus aureus.
Biochem Biophys Res Commun. 2015 Aug 28;464(3):894-900. doi: 10.1016/j.bbrc.2015.07.062. Epub 2015 Jul 17.
6
Recombination between phages and CRISPR-cas loci facilitates horizontal gene transfer in staphylococci.
Nat Microbiol. 2019 Jun;4(6):956-963. doi: 10.1038/s41564-019-0400-2. Epub 2019 Mar 18.
7
Transfer of plasmid DNA to clinical coagulase-negative staphylococcal pathogens by using a unique bacteriophage.
Appl Environ Microbiol. 2015 Apr;81(7):2481-8. doi: 10.1128/AEM.04190-14. Epub 2015 Jan 23.
8
CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction.
mBio. 2018 Feb 13;9(1):e02406-17. doi: 10.1128/mBio.02406-17.
9
Intra- and inter-species mobilisation of non-conjugative plasmids in staphylococci.
J Med Microbiol. 1992 Sep;37(3):180-6. doi: 10.1099/00222615-37-3-180.

引用本文的文献

1
Exploring the eco-evolutionary role of plasmids and defense systems in '' extreme acidophile.
Front Microbiol. 2025 Aug 11;16:1610279. doi: 10.3389/fmicb.2025.1610279. eCollection 2025.
2
Phage-mediated horizontal transfer of virulence genes with regulatory feedback from the host.
Imeta. 2025 May 20;4(4):e70042. doi: 10.1002/imt2.70042. eCollection 2025 Aug.
5
Prevalence and genomic insights into type III-A CRISPR-Cas system acquisition in global strains.
Front Cell Infect Microbiol. 2025 Jul 28;15:1644286. doi: 10.3389/fcimb.2025.1644286. eCollection 2025.
6
The stress of carrying CRISPR-Cas.
Virulence. 2025 Dec;16(1):2541701. doi: 10.1080/21505594.2025.2541701. Epub 2025 Aug 4.
7
The extended mobility of plasmids.
Nucleic Acids Res. 2025 Jul 19;53(14). doi: 10.1093/nar/gkaf652.
8
Mechanistic study of the immune defense function of the CRISPR1-Cas system in .
Virulence. 2025 Dec;16(1):2530665. doi: 10.1080/21505594.2025.2530665. Epub 2025 Jul 15.
9
Advancements in CRISPR/Cas systems for disease treatment.
Acta Pharm Sin B. 2025 Jun;15(6):2818-2844. doi: 10.1016/j.apsb.2025.05.007. Epub 2025 May 17.
10
CRISPR screening approaches in breast cancer research.
Cancer Metastasis Rev. 2025 Jul 12;44(3):59. doi: 10.1007/s10555-025-10275-1.

本文引用的文献

1
Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus.
RNA. 2008 Dec;14(12):2572-9. doi: 10.1261/rna.1246808. Epub 2008 Oct 29.
2
Small CRISPR RNAs guide antiviral defense in prokaryotes.
Science. 2008 Aug 15;321(5891):960-4. doi: 10.1126/science.1159689.
4
Phage response to CRISPR-encoded resistance in Streptococcus thermophilus.
J Bacteriol. 2008 Feb;190(4):1390-400. doi: 10.1128/JB.01412-07. Epub 2007 Dec 7.
5
6
CRISPR provides acquired resistance against viruses in prokaryotes.
Science. 2007 Mar 23;315(5819):1709-12. doi: 10.1126/science.1138140.
9
Antimicrobial-resistant bacteria in the community setting.
Nat Rev Microbiol. 2006 Jan;4(1):36-45. doi: 10.1038/nrmicro1325.
10
A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes.
PLoS Comput Biol. 2005 Nov;1(6):e60. doi: 10.1371/journal.pcbi.0010060. Epub 2005 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验