Suppr超能文献

标签触发巩固:一种早期和晚期长时程增强与抑制的模型。

Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression.

作者信息

Clopath Claudia, Ziegler Lorric, Vasilaki Eleni, Büsing Lars, Gerstner Wulfram

机构信息

Laboratory of Computational Neuroscience, Brain-Mind Institute and School of Computer and Communication Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

出版信息

PLoS Comput Biol. 2008 Dec;4(12):e1000248. doi: 10.1371/journal.pcbi.1000248. Epub 2008 Dec 26.

Abstract

Changes in synaptic efficacies need to be long-lasting in order to serve as a substrate for memory. Experimentally, synaptic plasticity exhibits phases covering the induction of long-term potentiation and depression (LTP/LTD) during the early phase of synaptic plasticity, the setting of synaptic tags, a trigger process for protein synthesis, and a slow transition leading to synaptic consolidation during the late phase of synaptic plasticity. We present a mathematical model that describes these different phases of synaptic plasticity. The model explains a large body of experimental data on synaptic tagging and capture, cross-tagging, and the late phases of LTP and LTD. Moreover, the model accounts for the dependence of LTP and LTD induction on voltage and presynaptic stimulation frequency. The stabilization of potentiated synapses during the transition from early to late LTP occurs by protein synthesis dynamics that are shared by groups of synapses. The functional consequence of this shared process is that previously stabilized patterns of strong or weak synapses onto the same postsynaptic neuron are well protected against later changes induced by LTP/LTD protocols at individual synapses.

摘要

为了作为记忆的基础,突触效能的变化需要持久。在实验中,突触可塑性表现出多个阶段,包括突触可塑性早期的长期增强和抑制(LTP/LTD)诱导阶段、突触标记的设定、蛋白质合成的触发过程,以及突触可塑性后期导致突触巩固的缓慢转变阶段。我们提出了一个数学模型来描述突触可塑性的这些不同阶段。该模型解释了大量关于突触标记与捕获、交叉标记以及LTP和LTD后期阶段的实验数据。此外,该模型还解释了LTP和LTD诱导对电压和突触前刺激频率的依赖性。在从早期LTP向晚期LTP转变过程中,增强突触的稳定是通过突触群体共享的蛋白质合成动力学实现的。这一共享过程的功能结果是,先前稳定的、作用于同一突触后神经元的强或弱突触模式能够很好地抵御随后由单个突触处LTP/LTD方案诱导的变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4093/2596310/c859664d95f1/pcbi.1000248.g001.jpg

相似文献

1
Tag-trigger-consolidation: a model of early and late long-term-potentiation and depression.
PLoS Comput Biol. 2008 Dec;4(12):e1000248. doi: 10.1371/journal.pcbi.1000248. Epub 2008 Dec 26.
2
Synaptic plasticity with discrete state synapses.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Sep;72(3 Pt 1):031914. doi: 10.1103/PhysRevE.72.031914. Epub 2005 Sep 22.
3
Late-associativity, synaptic tagging, and the role of dopamine during LTP and LTD.
Neurobiol Learn Mem. 2004 Jul;82(1):12-25. doi: 10.1016/j.nlm.2004.03.003.
8
Diversity of neuropsin (KLK8)-dependent synaptic associativity in the hippocampal pyramidal neuron.
J Physiol. 2011 Jul 15;589(Pt 14):3559-73. doi: 10.1113/jphysiol.2011.206169. Epub 2011 Jun 6.

引用本文的文献

2
Competitive processes shape multi-synapse plasticity along dendritic segments.
Nat Commun. 2024 Aug 31;15(1):7572. doi: 10.1038/s41467-024-51919-0.
3
Non-Hebbian plasticity transforms transient experiences into lasting memories.
Elife. 2024 Jul 18;12:RP91421. doi: 10.7554/eLife.91421.
4
Synapses tagged, memories kept: synaptic tagging and capture hypothesis in brain health and disease.
Philos Trans R Soc Lond B Biol Sci. 2024 Jul 29;379(1906):20230237. doi: 10.1098/rstb.2023.0237. Epub 2024 Jun 10.
5
Learning with filopodia and spines: Complementary strong and weak competition lead to specialized, graded, and protected receptive fields.
PLoS Comput Biol. 2024 May 14;20(5):e1012110. doi: 10.1371/journal.pcbi.1012110. eCollection 2024 May.
6
Anti-Hebbian plasticity drives sequence learning in striatum.
Commun Biol. 2024 May 9;7(1):555. doi: 10.1038/s42003-024-06203-8.
7
Neurobiological Causal Models of Language Processing.
Neurobiol Lang (Camb). 2024 Apr 1;5(1):225-247. doi: 10.1162/nol_a_00133. eCollection 2024.
8
Attractor neural networks with double well synapses.
PLoS Comput Biol. 2024 Feb 7;20(2):e1011354. doi: 10.1371/journal.pcbi.1011354. eCollection 2024 Feb.
9
Dynamic and selective engrams emerge with memory consolidation.
Nat Neurosci. 2024 Mar;27(3):561-572. doi: 10.1038/s41593-023-01551-w. Epub 2024 Jan 19.
10
Computational insights into mRNA and protein dynamics underlying synaptic plasticity rules.
Mol Cell Neurosci. 2023 Jun;125:103846. doi: 10.1016/j.mcn.2023.103846. Epub 2023 Mar 22.

本文引用的文献

1
ART 2: self-organization of stable category recognition codes for analog input patterns.
Appl Opt. 1987 Dec 1;26(23):4919-30. doi: 10.1364/AO.26.004919.
2
A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback.
PLoS Comput Biol. 2008 Oct;4(10):e1000180. doi: 10.1371/journal.pcbi.1000180. Epub 2008 Oct 10.
3
Glutamate receptor dynamics in dendritic microdomains.
Neuron. 2008 May 22;58(4):472-97. doi: 10.1016/j.neuron.2008.04.030.
4
Dynamic I-V curves are reliable predictors of naturalistic pyramidal-neuron voltage traces.
J Neurophysiol. 2008 Feb;99(2):656-66. doi: 10.1152/jn.01107.2007. Epub 2007 Dec 5.
5
STDP in a bistable synapse model based on CaMKII and associated signaling pathways.
PLoS Comput Biol. 2007 Nov;3(11):e221. doi: 10.1371/journal.pcbi.0030221. Epub 2007 Sep 26.
7
Synergistic requirements for the induction of dopaminergic D1/D5-receptor-mediated LTP in hippocampal slices of rat CA1 in vitro.
Neuropharmacology. 2007 Jun;52(7):1547-54. doi: 10.1016/j.neuropharm.2007.02.010. Epub 2007 Mar 12.
9
Solving the distal reward problem through linkage of STDP and dopamine signaling.
Cereb Cortex. 2007 Oct;17(10):2443-52. doi: 10.1093/cercor/bhl152. Epub 2007 Jan 13.
10
Triplets of spikes in a model of spike timing-dependent plasticity.
J Neurosci. 2006 Sep 20;26(38):9673-82. doi: 10.1523/JNEUROSCI.1425-06.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验