Suppr超能文献

纹状体中的刺激-反应和反应-结果学习机制。

Stimulus-response and response-outcome learning mechanisms in the striatum.

作者信息

Horvitz Jon C

机构信息

Program in Cognitive Neuroscience, Department of Psychology, The City College of the City University of New York, 138th Street and Convent Avenue, New York, NY 10031, United States.

出版信息

Behav Brain Res. 2009 Apr 12;199(1):129-40. doi: 10.1016/j.bbr.2008.12.014. Epub 2008 Dec 14.

Abstract

While midbrain DA neurons show phasic activations in response to both reward-predicting and salient non-reward events, activation responses to primary and conditioned rewards are sustained for several hundreds of milliseconds beyond those elicited by salient non-reward-related stimuli. The longer-duration DA reward response and corresponding elevated DA release in striatal target sites may selectively strengthen currently-active corticostriatal synapses, i.e., those associated with the successful reward-procuring behavior. This paper describes how similar models of DA-mediated plasticity of corticostriatal synapses may describe both stimulus-response and response-outcome learning. DA-mediated strengthening of corticostriatal synapses in regions of the dorsolateral striatum receiving afferents from primary sensorimotor cortex is likely to bind corticostriatal inputs representing the previously-emitted movement to striatal outputs contributing to the selection of the next movement segment in a behavioral sequence. Within the striatum, more generally, inputs from distinct regions of the frontal cortex that code independently for movement direction and reward expectation send convergent projections to striatal output cells. DA-mediated strengthening of active corticostriatal synapses promotes the future output of the striatal cell under similar input conditions. This is postulated to promote persistence of neuronal activity in the very cortical cells that drive corticostriatal input, leading to the establishment of sustained reverberatory loops that permit cortical movement-related cells to maintain activity until the appropriate time of movement initiation.

摘要

虽然中脑多巴胺能神经元对奖励预测和显著的非奖励事件均表现出相位激活,但对初级奖励和条件性奖励的激活反应会持续数百毫秒,超过由显著的非奖励相关刺激引发的反应。在纹状体靶位点中,持续时间更长的多巴胺奖励反应及相应升高的多巴胺释放可能会选择性地增强当前活跃的皮质纹状体突触,即那些与成功获取奖励行为相关的突触。本文描述了多巴胺介导的皮质纹状体突触可塑性的类似模型如何既能描述刺激-反应学习,又能描述反应-结果学习。多巴胺介导的背外侧纹状体区域皮质纹状体突触增强,该区域接收来自初级感觉运动皮层的传入神经,这可能会将代表先前发出动作的皮质纹状体输入与有助于在行为序列中选择下一个动作片段的纹状体输出联系起来。更一般地说,在纹状体内,额叶皮层不同区域独立编码运动方向和奖励期望的输入会向纹状体输出细胞发送汇聚投射。多巴胺介导对活跃皮质纹状体突触的增强作用会促进在相似输入条件下纹状体细胞的未来输出。据推测,这会促进驱动皮质纹状体输入的皮质细胞中神经元活动的持续,从而导致建立持续的回响回路,使与皮质运动相关的细胞能够维持活动,直到适当的运动启动时间。

相似文献

1
Stimulus-response and response-outcome learning mechanisms in the striatum.
Behav Brain Res. 2009 Apr 12;199(1):129-40. doi: 10.1016/j.bbr.2008.12.014. Epub 2008 Dec 14.
2
Dopamine's Effects on Corticostriatal Synapses during Reward-Based Behaviors.
Neuron. 2018 Feb 7;97(3):494-510. doi: 10.1016/j.neuron.2018.01.006.
3
Short-term and long-term plasticity at corticostriatal synapses: implications for learning and memory.
Behav Brain Res. 2009 Apr 12;199(1):108-18. doi: 10.1016/j.bbr.2008.09.025. Epub 2008 Oct 2.
4
Molecular substrates of action control in cortico-striatal circuits.
Prog Neurobiol. 2011 Sep 15;95(1):1-13. doi: 10.1016/j.pneurobio.2011.05.007. Epub 2011 Jun 17.
5
Dopamine-mediated regulation of corticostriatal synaptic plasticity.
Trends Neurosci. 2007 May;30(5):211-9. doi: 10.1016/j.tins.2007.03.001. Epub 2007 Mar 23.
6
Dopamine-dependent plasticity of corticostriatal synapses.
Neural Netw. 2002 Jun-Jul;15(4-6):507-21. doi: 10.1016/s0893-6080(02)00045-x.
7
Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
Prog Brain Res. 2000;126:193-215. doi: 10.1016/S0079-6123(00)26015-9.
8
Bidirectional activity-dependent plasticity at corticostriatal synapses.
J Neurosci. 2005 Dec 7;25(49):11279-87. doi: 10.1523/JNEUROSCI.4476-05.2005.
9
Striatal dopamine ramping may indicate flexible reinforcement learning with forgetting in the cortico-basal ganglia circuits.
Front Neural Circuits. 2014 Apr 9;8:36. doi: 10.3389/fncir.2014.00036. eCollection 2014.
10
Striatal action-learning based on dopamine concentration.
Exp Brain Res. 2010 Jan;200(3-4):307-17. doi: 10.1007/s00221-009-2060-6. Epub 2009 Nov 11.

引用本文的文献

1
Maturation of striatal dopamine supports the development of habitual behavior through adolescence.
bioRxiv. 2025 Jan 6:2025.01.06.631527. doi: 10.1101/2025.01.06.631527.
3
A role for the medial temporal lobes in category learning.
Learn Mem. 2020 Sep 15;27(10):441-450. doi: 10.1101/lm.051995.120. Print 2020 Oct.
4
Synergy of Distinct Dopamine Projection Populations in Behavioral Reinforcement.
Neuron. 2020 Mar 4;105(5):909-920.e5. doi: 10.1016/j.neuron.2019.11.024. Epub 2019 Dec 23.
5
The role of the nucleus accumbens in learned approach behavior diminishes with training.
Eur J Neurosci. 2019 Nov;50(9):3403-3415. doi: 10.1111/ejn.14523. Epub 2019 Aug 19.
6
Coding of self-motion-induced and self-independent visual motion in the rat dorsomedial striatum.
PLoS Biol. 2018 Jun 25;16(6):e2004712. doi: 10.1371/journal.pbio.2004712. eCollection 2018 Jun.
7
Behavioural and neural sequelae of stressor exposure are not modulated by controllability in females.
Eur J Neurosci. 2018 Apr;47(8):959-967. doi: 10.1111/ejn.13833. Epub 2018 Feb 5.
8
A Dynamic Circuit Hypothesis for the Pathogenesis of Blepharospasm.
Front Comput Neurosci. 2017 Mar 7;11:11. doi: 10.3389/fncom.2017.00011. eCollection 2017.
9
Striatopallidal Neuron NMDA Receptors Control Synaptic Connectivity, Locomotor, and Goal-Directed Behaviors.
J Neurosci. 2016 May 4;36(18):4976-92. doi: 10.1523/JNEUROSCI.2717-15.2016.

本文引用的文献

1
Dichotomous dopaminergic control of striatal synaptic plasticity.
Science. 2008 Aug 8;321(5890):848-51. doi: 10.1126/science.1160575.
2
Central thalamic contributions to arousal regulation and neurological disorders of consciousness.
Ann N Y Acad Sci. 2008;1129:105-18. doi: 10.1196/annals.1417.029.
3
Habits, rituals, and the evaluative brain.
Annu Rev Neurosci. 2008;31:359-87. doi: 10.1146/annurev.neuro.29.051605.112851.
4
Differential involvement of the basolateral amygdala and mediodorsal thalamus in instrumental action selection.
J Neurosci. 2008 Apr 23;28(17):4398-405. doi: 10.1523/JNEUROSCI.5472-07.2008.
5
The orbital cortex in rats topographically projects to central parts of the caudate-putamen complex.
Neurosci Lett. 2008 Feb 13;432(1):40-5. doi: 10.1016/j.neulet.2007.12.024. Epub 2007 Dec 23.
6
Action and outcome encoding in the primate caudate nucleus.
J Neurosci. 2007 Dec 26;27(52):14502-14. doi: 10.1523/JNEUROSCI.3060-07.2007.
7
What is reinforced by phasic dopamine signals?
Brain Res Rev. 2008 Aug;58(2):322-39. doi: 10.1016/j.brainresrev.2007.10.007. Epub 2007 Oct 26.
8
The amygdala, reward and emotion.
Trends Cogn Sci. 2007 Nov;11(11):489-97. doi: 10.1016/j.tics.2007.08.013. Epub 2007 Nov 7.
9
Supplementary motor area and presupplementary motor area: targets of basal ganglia and cerebellar output.
J Neurosci. 2007 Oct 3;27(40):10659-73. doi: 10.1523/JNEUROSCI.3134-07.2007.
10
Cue-evoked encoding of movement planning and execution in the rat nucleus accumbens.
J Physiol. 2007 Nov 1;584(Pt 3):801-18. doi: 10.1113/jphysiol.2007.140236. Epub 2007 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验