Suppr超能文献

视觉搜索中最优注视点选择的简单求和规则。

Simple summation rule for optimal fixation selection in visual search.

作者信息

Najemnik Jiri, Geisler Wilson S

机构信息

Center for Perceptual Systems and Department of Psychology, University of Texas at Austin, 78712, United States.

出版信息

Vision Res. 2009 Jun;49(10):1286-94. doi: 10.1016/j.visres.2008.12.005. Epub 2009 Jan 10.

Abstract

When searching for a known target in a natural texture, practiced humans achieve near-optimal performance compared to a Bayesian ideal searcher constrained with the human map of target detectability across the visual field [Najemnik, J., & Geisler, W. S. (2005). Optimal eye movement strategies in visual search. Nature, 434, 387-391]. To do so, humans must be good at choosing where to fixate during the search [Najemnik, J., & Geisler, W.S. (2008). Eye movement statistics in humans are consistent with an optimal strategy. Journal of Vision, 8(3), 1-14. 4]; however, it seems unlikely that a biological nervous system would implement the computations for the Bayesian ideal fixation selection because of their complexity. Here we derive and test a simple heuristic for optimal fixation selection that appears to be a much better candidate for implementation within a biological nervous system. Specifically, we show that the near-optimal fixation location is the maximum of the current posterior probability distribution for target location after the distribution is filtered by (convolved with) the square of the retinotopic target detectability map. We term the model that uses this strategy the entropy limit minimization (ELM) searcher. We show that when constrained with human-like retinotopic map of target detectability and human search error rates, the ELM searcher performs as well as the Bayesian ideal searcher, and produces fixation statistics similar to human.

摘要

在自然纹理中搜索已知目标时,与受人类视野目标可检测性图谱约束的贝叶斯理想搜索者相比,经验丰富的人类能够实现近乎最优的搜索表现[纳杰姆尼克,J.,& 盖斯勒,W. S.(2005年)。视觉搜索中的最优眼动策略。《自然》,434卷,387 - 391页]。为此,人类必须善于在搜索过程中选择注视位置[纳杰姆尼克,J.,& 盖斯勒,W. S.(2008年)。人类的眼动统计与最优策略一致。《视觉杂志》,8(3)卷,1 - 14页。4];然而,由于其复杂性,生物神经系统似乎不太可能执行贝叶斯理想注视选择的计算。在此,我们推导并测试了一种用于最优注视选择的简单启发式方法,它似乎是在生物神经系统中实现的更好候选方法。具体而言,我们表明,近乎最优的注视位置是目标位置当前后验概率分布经视网膜拓扑目标可检测性图谱的平方滤波(卷积)后的最大值。我们将使用此策略的模型称为熵限最小化(ELM)搜索者。我们表明,当受类人视网膜拓扑目标可检测性图谱和人类搜索错误率约束时,ELM搜索者的表现与贝叶斯理想搜索者一样好,并产生与人类相似的注视统计结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验