Suppr超能文献

人类视觉搜索遵循一种次优贝叶斯策略,该策略由时空计算模型和实验揭示。

Human visual search follows a suboptimal Bayesian strategy revealed by a spatiotemporal computational model and experiment.

作者信息

Zhou Yunhui, Yu Yuguo

机构信息

School of Life Sciences, Fudan University, 200433, Shanghai, China.

State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, 200433, Shanghai, China.

出版信息

Commun Biol. 2021 Jan 4;4(1):34. doi: 10.1038/s42003-020-01485-0.

Abstract

There is conflicting evidence regarding whether humans can make spatially optimal eye movements during visual search. Some studies have shown that humans can optimally integrate information across fixations and determine the next fixation location, however, these models have generally ignored the control of fixation duration and memory limitation, and the model results do not agree well with the details of human eye movement metrics. Here, we measured the temporal course of the human visibility map and performed a visual search experiment. We further built a continuous-time eye movement model that considers saccadic inaccuracy, saccadic bias, and memory constraints. We show that this model agrees better with the spatial and temporal properties of human eye movements and predict that humans have a memory capacity of around eight previous fixations. The model results reveal that humans employ a suboptimal eye movement strategy to find a target, which may minimize costs while still achieving sufficiently high search performance.

摘要

关于人类在视觉搜索过程中是否能进行空间最优眼动,存在相互矛盾的证据。一些研究表明,人类能够在注视过程中最优地整合信息并确定下一个注视位置,然而,这些模型通常忽略了注视持续时间的控制和记忆限制,并且模型结果与人类眼动指标的细节不太相符。在此,我们测量了人类可见性图的时间进程并进行了视觉搜索实验。我们进一步构建了一个考虑扫视不准确、扫视偏差和记忆限制的连续时间眼动模型。我们表明,该模型与人类眼动的时空特性更相符,并预测人类具有大约八个先前注视的记忆容量。模型结果表明,人类采用次优眼动策略来寻找目标,这可能在将成本降至最低的同时仍能实现足够高的搜索性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa39/7782508/be02cbb5354c/42003_2020_1485_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验