Hanawa Takao
Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-surugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
J R Soc Interface. 2009 Jun 6;6 Suppl 3(Suppl 3):S361-9. doi: 10.1098/rsif.2008.0427.focus. Epub 2009 Jan 20.
Surface modification is an important and predominant technique for obtaining biofunction and biocompatibility in metals for biomedical use. The surface modification technique is a process that changes the surface composition, structure and morphology of a material, leaving the bulk mechanical properties intact. A tremendous number of surface modification techniques using dry and wet processes to improve the hard tissue compatibility of titanium have been developed. Some are now commercially available. Most of these processes have been developed by Japanese institutions since the 1990 s. A second approach is the immobilization of biofunctional molecules to the metal surface to control the adsorption of proteins and adhesion of cells, platelets and bacteria. The immobilization of poly(ethylene glycol) to a metal surface with electrodeposition and its effect on biofunction are reviewed. The creation of a metal-polymer composite is another way to obtain metal-based biofunctional materials. The relationship between the shear bonding strength and the chemical structure at the bonding interface of a Ti-segmentated polyurethane composite through a silane coupling agent is explained.
表面改性是一种重要且占主导地位的技术,用于使生物医学用金属具备生物功能和生物相容性。表面改性技术是一个改变材料表面组成、结构和形态,而保持其整体机械性能不变的过程。已经开发出大量使用干法和湿法工艺来改善钛与硬组织相容性的表面改性技术。其中一些技术现已商业化。自20世纪90年代以来,这些工艺大多是由日本机构开发的。第二种方法是将生物功能分子固定在金属表面,以控制蛋白质的吸附以及细胞、血小板和细菌的黏附。综述了通过电沉积将聚乙二醇固定在金属表面及其对生物功能的影响。创建金属-聚合物复合材料是获得金属基生物功能材料的另一种方式。解释了通过硅烷偶联剂在钛分段聚氨酯复合材料的粘结界面处剪切粘结强度与化学结构之间的关系。