Suppr超能文献

癫痫中的头部建模与皮质源定位

Head modeling and cortical source localization in epilepsy.

作者信息

Acar Zeynep Akalin, Makeig Scott, Worrell Gregory

机构信息

Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California-San Diego, La Jolla, CA, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:3763-6. doi: 10.1109/IEMBS.2008.4650027.

Abstract

In this study, we developed numerical methods for investigating the dynamics of epilepsy from multi-scale EEG recordings acquired simultaneously from the scalp (sEEG) and intracranial subdural and/or depth electrodes (iEEG) in patients undergoing pre-surgical evaluation at the epilepsy center of the Mayo Clinic (Rochester, MN). The data are analyzed using independent component analysis (ICA), which identifies and isolates independent signal components from multi-channel recordings. A realistic individual head model was constructed for a patient undergoing pre-surgical evaluation. The forward problem of electro-magnetic source localization was solved using the Boundary Element Method (BEM). Using this approach, we investigated the relationships between noninvasive and invasive source localization of human electrical brain data sources. A difference of about 1 cm was observed between sources estimated from sEEG and iEEG measurements.

摘要

在本研究中,我们开发了数值方法,用于研究梅奥诊所(明尼苏达州罗切斯特)癫痫中心接受术前评估的患者,从头皮(sEEG)以及颅内硬膜下和/或深度电极(iEEG)同时采集的多尺度脑电图记录中的癫痫动态。使用独立成分分析(ICA)对数据进行分析,该方法可从多通道记录中识别并分离出独立的信号成分。为一名接受术前评估的患者构建了逼真的个体头部模型。使用边界元法(BEM)解决电磁源定位的正向问题。通过这种方法,我们研究了人类脑电数据源的非侵入性和侵入性源定位之间的关系。在根据sEEG和iEEG测量估计的源之间观察到约1厘米的差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验