Krembil Neuroscience Centre, Toronto Western Hospital, University of Toronto, 399 Bathurst Street, Toronto, Ontario, Canada M5T 2S8.
Clin Neurophysiol. 2013 May;124(5):941-55. doi: 10.1016/j.clinph.2012.10.022. Epub 2012 Nov 29.
To assess whether existing noninvasive source localization techniques can provide valid solutions for large extended cortical sources we tested the capability of various methods of EEG source imaging (ESI) and magnetic source imaging (MSI) to localize the large superficial cortical generator of the human K-complex.
We recently determined the intracranial distribution of the K-complex in a study of 6 patients with epilepsy (Clin. Neurophysiol. 121 (2010) 1176). Here we use the simultaneously acquired scalp EEG data to evaluate the validity and reliability of different ESI techniques. MEG recordings were acquired in 3 of the 6 patients, and K-complexes were recorded with high density EEG and MEG in an additional subject without epilepsy. ESI forward models included finite element method and boundary element method (BEM) volume conductors; for MSI, single sphere and BEM models were assessed. Inverse models included equivalent current dipole mapping and distributed current source modeling algorithms.
ESI and MSI provided physiologically invalid source solutions in all subjects, incorrectly localizing K-complex generators to deep midline structures. ESI provided consistent localization results across subjects for individual and averaged K-complexes, indicating solutions were not influenced by random noise or choice of model parameters. MEG K-complexes were lower in amplitude relative to baseline than EEG K-complexes, with less consistent localization results even after signal averaging, likely due to MEG-specific signal cancellation and sensitivity to source orientation. Distributed source modeling did not resolve the known problem of excessively deep fitting of single dipole locations for extended cortical sources.
Various noninvasive ESI and MSI techniques tested did not provide localization results for individual or averaged K-complexes that were physiologically meaningful or concordant with source locations indicated by intracranial recordings. Distributed source algorithms, though theoretically more appropriate for localizing extended cortical sources, showed the same propensity as dipole mapping to provide deep midline solutions for an extended superficial cortical source. Further studies are needed to determine appropriate modeling approaches for these large electrographic events.
Existing noninvasive source localization techniques may not provide valid solutions for large extended cortical sources such as the human K-complex.
评估现有的非侵入性源定位技术是否能够为我们测试的大型扩展皮质源提供有效解决方案,为此我们检验了各种脑电图源成像(ESI)和磁源成像(MSI)方法定位人类 K-复合波大型浅表皮质发生器的能力。
我们最近在一项针对 6 名癫痫患者的研究中确定了 K-复合波的颅内分布(Clin. Neurophysiol. 121 (2010) 1176)。在这里,我们使用同时采集的头皮 EEG 数据评估不同 ESI 技术的有效性和可靠性。在 6 名患者中的 3 名中采集了 MEG 记录,并且在另一名无癫痫的患者中使用高密度 EEG 和 MEG 记录了 K-复合波。ESI 正向模型包括有限元方法和边界元方法(BEM)容积导体;对于 MSI,评估了单球和 BEM 模型。逆模型包括等效电流偶极子映射和分布式电流源建模算法。
ESI 和 MSI 在所有受试者中提供了生理学上无效的源解决方案,错误地将 K-复合波发生器定位到深部中线结构。ESI 为单个和平均 K-复合波提供了跨受试者的一致定位结果,表明解决方案不受随机噪声或模型参数选择的影响。MEG K-复合波的振幅相对于基线较低,定位结果不如 EEG K-复合波一致,即使在信号平均后也是如此,这可能是由于 MEG 特有的信号抵消和对源方向的敏感性所致。分布式源建模并不能解决对于扩展皮质源,单偶极子位置的过度深拟合的已知问题。
测试的各种非侵入性 ESI 和 MSI 技术没有为单个或平均 K-复合波提供生理上有意义或与颅内记录指示的源位置一致的定位结果。分布式源算法虽然在理论上更适合定位扩展的皮质源,但与偶极子映射一样,倾向于为扩展的浅表皮质源提供深部中线解决方案。需要进一步的研究来确定这些大型电图事件的适当建模方法。
现有的非侵入性源定位技术可能无法为大型扩展皮质源(如人类 K-复合波)提供有效解决方案。