EERE Department, Oregon Institute of Technology, Portland, OR 97006, USA.
Med Biol Eng Comput. 2012 Apr;50(4):329-40. doi: 10.1007/s11517-012-0875-y. Epub 2012 Mar 1.
We describe a novel algorithm for identification of activity/rest periods based on actigraphy signals designed to be used for a proper estimation of ambulatory blood pressure monitoring parameters. Automatic and accurate determination of activity/rest periods is critical in cardiovascular risk assessment applications including the evaluation of dipper versus non-dipper status. The algorithm is based on adaptive rank-order filters, rank-order decision logic, and morphological processing. The algorithm was validated on a database of 104 subjects including actigraphy signals for both the dominant and non-dominant hands (i.e., 208 actigraphy recordings). The algorithm achieved a mean performance above 94.0%, with an average number of 0.02 invalid transitions per 48 h.
我们描述了一种新的算法,用于根据活动/休息期的活动记录仪信号进行识别,旨在用于正确估计动态血压监测参数。在心血管风险评估应用中,包括评估勺型与非勺型状态,自动准确地确定活动/休息期是至关重要的。该算法基于自适应秩滤波器、秩决策逻辑和形态学处理。该算法在一个包括优势手和非优势手活动记录仪信号的 104 名受试者的数据库上进行了验证(即 208 个活动记录仪记录)。该算法的平均性能超过 94.0%,平均每 48 小时有 0.02 个无效转换。