Suppr超能文献

基于分形分析的前列腺病理图像自动分类

Automatic classification for pathological prostate images based on fractal analysis.

作者信息

Huang Po-Whei, Lee Cheng-Hsiung

机构信息

Department of Computer Science and Engineering,National Chung Hsing University, Taichung 40227, Taiwan.

出版信息

IEEE Trans Med Imaging. 2009 Jul;28(7):1037-50. doi: 10.1109/TMI.2009.2012704. Epub 2009 Jan 19.

Abstract

Accurate grading for prostatic carcinoma in pathological images is important to prognosis and treatment planning. Since human grading is always time-consuming and subjective, this paper presents a computer-aided system to automatically grade pathological images according to Gleason grading system which is the most widespread method for histological grading of prostate tissues. We proposed two feature extraction methods based on fractal dimension to analyze variations of intensity and texture complexity in regions of interest. Each image can be classified into an appropriate grade by using Bayesian, k-NN, and support vector machine (SVM) classifiers, respectively. Leave-one-out and k-fold cross-validation procedures were used to estimate the correct classification rates (CCR). Experimental results show that 91.2%, 93.7%, and 93.7% CCR can be achieved by Bayesian, k-NN, and SVM classifiers, respectively, for a set of 205 pathological prostate images. If our fractal-based feature set is optimized by the sequential floating forward selection method, the CCR can be promoted up to 94.6%, 94.2%, and 94.6%, respectively, using each of the above three classifiers. Experimental results also show that our feature set is better than the feature sets extracted from multiwavelets, Gabor filters, and gray-level co-occurrence matrix methods because it has a much smaller size and still keeps the most powerful discriminating capability in grading prostate images.

摘要

对前列腺癌病理图像进行准确分级对于预后和治疗规划至关重要。由于人工分级既耗时又主观,本文提出了一种计算机辅助系统,可根据Gleason分级系统(这是前列腺组织组织学分级最广泛使用的方法)自动对病理图像进行分级。我们提出了两种基于分形维数的特征提取方法,以分析感兴趣区域内强度和纹理复杂性的变化。分别使用贝叶斯、k近邻和支持向量机(SVM)分类器可将每张图像分类到适当的等级。采用留一法和k折交叉验证程序来估计正确分类率(CCR)。实验结果表明,对于一组205张前列腺病理图像,贝叶斯、k近邻和SVM分类器分别可实现91.2%、93.7%和93.7%的CCR。如果通过顺序浮动前向选择方法优化我们基于分形的特征集,使用上述三种分类器中的每一种,CCR可分别提高到94.6%、94.2%和94.6%。实验结果还表明,我们的特征集优于从多小波、Gabor滤波器和灰度共生矩阵方法中提取的特征集,因为它的尺寸小得多,并且在前列腺图像分级中仍保持最强的区分能力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验