García Gabriel, Colomer Adrián, Naranjo Valery
Instituto de Investigación e Innovación en Bioingeniería (I3B), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46008 Valencia, Spain.
Entropy (Basel). 2019 Apr 2;21(4):356. doi: 10.3390/e21040356.
Analysis of histopathological image supposes the most reliable procedure to identify prostate cancer. Most studies try to develop computer aid-systems to face the Gleason grading problem. On the contrary, we delve into the discrimination between healthy and cancerous tissues in its earliest stage, only focusing on the information contained in the automatically segmented gland candidates. We propose a hand-driven learning approach, in which we perform an exhaustive hand-crafted feature extraction stage combining in a novel way descriptors of morphology, texture, fractals and contextual information of the candidates under study. Then, we carry out an in-depth statistical analysis to select the most relevant features that constitute the inputs to the optimised machine-learning classifiers. Additionally, we apply for the first time on prostate segmented glands, deep-learning algorithms modifying the popular VGG19 neural network. We fine-tuned the last convolutional block of the architecture to provide the model specific knowledge about the gland images. The hand-driven learning approach, using a nonlinear Support Vector Machine, reports a slight outperforming over the rest of experiments with a final multi-class accuracy of 0.876 ± 0.026 in the discrimination between false glands (artefacts), benign glands and Gleason grade 3 glands.
组织病理学图像分析被认为是识别前列腺癌最可靠的方法。大多数研究试图开发计算机辅助系统来解决 Gleason 分级问题。相反,我们深入研究健康组织和癌组织在最早期阶段的差异,仅关注自动分割的腺体候选区域中包含的信息。我们提出一种手动驱动的学习方法,在该方法中,我们执行一个详尽的手工特征提取阶段,以一种新颖的方式将形态学、纹理、分形和所研究候选区域的上下文信息的描述符结合起来。然后,我们进行深入的统计分析,以选择构成优化机器学习分类器输入的最相关特征。此外,我们首次在前列腺分割腺体上应用深度学习算法,对流行的 VGG19 神经网络进行修改。我们对该架构的最后一个卷积块进行微调,以提供模型关于腺体图像的特定知识。使用非线性支持向量机的手动驱动学习方法在区分假腺体(伪像)、良性腺体和 Gleason 3 级腺体方面,比其他实验略有优势,最终多类准确率为 0.876 ± 0.026。