Suppr超能文献

组织病理学图像上的早期前列腺癌识别:人工驱动与自动学习

First-Stage Prostate Cancer Identification on Histopathological Images: Hand-Driven versus Automatic Learning.

作者信息

García Gabriel, Colomer Adrián, Naranjo Valery

机构信息

Instituto de Investigación e Innovación en Bioingeniería (I3B), Universitat Politècnica de València (UPV), Camino de Vera s/n, 46008 Valencia, Spain.

出版信息

Entropy (Basel). 2019 Apr 2;21(4):356. doi: 10.3390/e21040356.

Abstract

Analysis of histopathological image supposes the most reliable procedure to identify prostate cancer. Most studies try to develop computer aid-systems to face the Gleason grading problem. On the contrary, we delve into the discrimination between healthy and cancerous tissues in its earliest stage, only focusing on the information contained in the automatically segmented gland candidates. We propose a hand-driven learning approach, in which we perform an exhaustive hand-crafted feature extraction stage combining in a novel way descriptors of morphology, texture, fractals and contextual information of the candidates under study. Then, we carry out an in-depth statistical analysis to select the most relevant features that constitute the inputs to the optimised machine-learning classifiers. Additionally, we apply for the first time on prostate segmented glands, deep-learning algorithms modifying the popular VGG19 neural network. We fine-tuned the last convolutional block of the architecture to provide the model specific knowledge about the gland images. The hand-driven learning approach, using a nonlinear Support Vector Machine, reports a slight outperforming over the rest of experiments with a final multi-class accuracy of 0.876 ± 0.026 in the discrimination between false glands (artefacts), benign glands and Gleason grade 3 glands.

摘要

组织病理学图像分析被认为是识别前列腺癌最可靠的方法。大多数研究试图开发计算机辅助系统来解决 Gleason 分级问题。相反,我们深入研究健康组织和癌组织在最早期阶段的差异,仅关注自动分割的腺体候选区域中包含的信息。我们提出一种手动驱动的学习方法,在该方法中,我们执行一个详尽的手工特征提取阶段,以一种新颖的方式将形态学、纹理、分形和所研究候选区域的上下文信息的描述符结合起来。然后,我们进行深入的统计分析,以选择构成优化机器学习分类器输入的最相关特征。此外,我们首次在前列腺分割腺体上应用深度学习算法,对流行的 VGG19 神经网络进行修改。我们对该架构的最后一个卷积块进行微调,以提供模型关于腺体图像的特定知识。使用非线性支持向量机的手动驱动学习方法在区分假腺体(伪像)、良性腺体和 Gleason 3 级腺体方面,比其他实验略有优势,最终多类准确率为 0.876 ± 0.026。

相似文献

3
Going deeper through the Gleason scoring scale: An automatic end-to-end system for histology prostate grading and cribriform pattern detection.
Comput Methods Programs Biomed. 2020 Oct;195:105637. doi: 10.1016/j.cmpb.2020.105637. Epub 2020 Jul 4.
6
A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
Comput Methods Programs Biomed. 2017 Mar;140:283-293. doi: 10.1016/j.cmpb.2016.12.019. Epub 2017 Jan 6.
7
Deep Learning-Based Gleason Grading of Prostate Cancer From Histopathology Images-Role of Multiscale Decision Aggregation and Data Augmentation.
IEEE J Biomed Health Inform. 2020 May;24(5):1413-1426. doi: 10.1109/JBHI.2019.2944643. Epub 2019 Sep 30.
8
Microscopic medical image classification framework via deep learning and shearlet transform.
J Med Imaging (Bellingham). 2016 Oct;3(4):044501. doi: 10.1117/1.JMI.3.4.044501. Epub 2016 Nov 3.
10
Prostate cancer classification with multiparametric MRI transfer learning model.
Med Phys. 2019 Feb;46(2):756-765. doi: 10.1002/mp.13367. Epub 2019 Jan 18.

引用本文的文献

本文引用的文献

1
Cancer statistics, 2019.
CA Cancer J Clin. 2019 Jan;69(1):7-34. doi: 10.3322/caac.21551. Epub 2019 Jan 8.
3
Automated Gleason grading of prostate cancer tissue microarrays via deep learning.
Sci Rep. 2018 Aug 13;8(1):12054. doi: 10.1038/s41598-018-30535-1.
4
Multiview boosting digital pathology analysis of prostate cancer.
Comput Methods Programs Biomed. 2017 Apr;142:91-99. doi: 10.1016/j.cmpb.2017.02.023. Epub 2017 Feb 22.
5
Convolutional Neural Networks for Medical Image Analysis: Full Training or Fine Tuning?
IEEE Trans Med Imaging. 2016 May;35(5):1299-1312. doi: 10.1109/TMI.2016.2535302. Epub 2016 Mar 7.
6
Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning.
IEEE Trans Med Imaging. 2016 May;35(5):1285-98. doi: 10.1109/TMI.2016.2528162. Epub 2016 Feb 11.
7
Machine learning approaches to analyze histological images of tissues from radical prostatectomies.
Comput Med Imaging Graph. 2015 Dec;46 Pt 2(Pt 2):197-208. doi: 10.1016/j.compmedimag.2015.08.002. Epub 2015 Aug 20.
8
Structure and context in prostatic gland segmentation and classification.
Med Image Comput Comput Assist Interv. 2012;15(Pt 1):115-23. doi: 10.1007/978-3-642-33415-3_15.
9
High-throughput detection of prostate cancer in histological sections using probabilistic pairwise Markov models.
Med Image Anal. 2010 Aug;14(4):617-29. doi: 10.1016/j.media.2010.04.007. Epub 2010 Apr 29.
10
A completed modeling of local binary pattern operator for texture classification.
IEEE Trans Image Process. 2010 Jun;19(6):1657-63. doi: 10.1109/TIP.2010.2044957. Epub 2010 Mar 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验