Suppr超能文献

电场对细胞细胞骨架和膜力学的调节作用:连接蛋白的作用

Regulation of cell cytoskeleton and membrane mechanics by electric field: role of linker proteins.

作者信息

Titushkin Igor, Cho Michael

机构信息

Department of Bioengineering, University of Illinois, Chicago, Illinois 60607, USA.

出版信息

Biophys J. 2009 Jan;96(2):717-28. doi: 10.1016/j.bpj.2008.09.035.

Abstract

Cellular mechanics is known to play an important role in the cell homeostasis including proliferation, motility, and differentiation. Significant variation in the mechanical properties between different cell types suggests that control of the cell metabolism is feasible through manipulation of the cell mechanical parameters using external physical stimuli. We investigated the electrocoupling mechanisms of cellular biomechanics modulation by an electrical stimulation in two mechanically distinct cell types--human mesenchymal stem cells and osteoblasts. Application of a 2 V/cm direct current electric field resulted in approximately a twofold decrease in the cell elasticity and depleted intracellular ATP. Reduction in the ATP level led to inhibition of the linker proteins that are known to physically couple the cell membrane and cytoskeleton. The membrane separation from the cytoskeleton was confirmed by up to a twofold increase in the membrane tether length that was extracted from the cell membrane after an electrical stimulation. In comparison to human mesenchymal stem cells, the membrane-cytoskeleton attachment in osteoblasts was much stronger but, in response to the same electrical stimulation, the membrane detachment from the cytoskeleton was found to be more pronounced. The observed effects mediated by an electric field are cell type- and serum-dependent and can potentially be used for electrically assisted cell manipulation. An in-depth understanding and control of the mechanisms to regulate cell mechanics by external physical stimulus (e.g., electric field) may have great implications for stem cell-based tissue engineering and regenerative medicine.

摘要

已知细胞力学在细胞稳态中发挥重要作用,包括细胞增殖、迁移和分化。不同细胞类型之间力学特性的显著差异表明,通过使用外部物理刺激来操纵细胞力学参数,控制细胞代谢是可行的。我们研究了在两种力学特性不同的细胞类型——人间充质干细胞和成骨细胞中,电刺激对细胞生物力学调节的电耦合机制。施加2 V/cm的直流电场导致细胞弹性大约降低两倍,细胞内ATP耗尽。ATP水平的降低导致已知在物理上连接细胞膜和细胞骨架的连接蛋白受到抑制。通过在电刺激后从细胞膜提取的膜系链长度增加高达两倍,证实了细胞膜与细胞骨架的分离。与人间充质干细胞相比,成骨细胞中膜-细胞骨架的附着要强得多,但在相同的电刺激下,发现细胞膜与细胞骨架的分离更为明显。电场介导的观察到的效应是细胞类型和血清依赖性的,并且可能潜在地用于电辅助细胞操作。深入理解和控制通过外部物理刺激(例如电场)调节细胞力学的机制,可能对基于干细胞的组织工程和再生医学具有重大意义。

相似文献

1
2
Controlling cellular biomechanics of human mesenchymal stem cells.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2090-3. doi: 10.1109/IEMBS.2009.5333949.
3
Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells.
Biophys J. 2007 Nov 15;93(10):3693-702. doi: 10.1529/biophysj.107.107797. Epub 2007 Aug 3.
4
Single-cell mechanics--An experimental-computational method for quantifying the membrane-cytoskeleton elasticity of cells.
Acta Biomater. 2015 Nov;27:224-235. doi: 10.1016/j.actbio.2015.08.028. Epub 2015 Aug 20.
5
Altered osteogenic commitment of human mesenchymal stem cells by ERM protein-dependent modulation of cellular biomechanics.
J Biomech. 2011 Oct 13;44(15):2692-8. doi: 10.1016/j.jbiomech.2011.07.024. Epub 2011 Aug 23.
6
Cytoskeletal changes of mesenchymal stem cells during differentiation.
ASAIO J. 2007 Mar-Apr;53(2):219-28. doi: 10.1097/MAT.0b013e31802deb2d.
7
Effects of nanosecond pulse electric fields on cellular elasticity.
Micron. 2015 May;72:15-20. doi: 10.1016/j.micron.2015.01.004. Epub 2015 Feb 13.
8
Distinct membrane mechanical properties of human mesenchymal stem cells determined using laser optical tweezers.
Biophys J. 2006 Apr 1;90(7):2582-91. doi: 10.1529/biophysj.105.073775. Epub 2006 Jan 6.
9
[Effect of different electrical stimulation waves on orientation and alignment of adipose derived mesenchymal stem cells].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2017 Jul 15;31(7):853-861. doi: 10.7507/1002-1892.201702027.

引用本文的文献

2
The Synergy of Thermal and Non-Thermal Effects in Hyperthermic Oncology.
Cancers (Basel). 2024 Nov 21;16(23):3908. doi: 10.3390/cancers16233908.
3
Electrical Stimulation Therapy - Dedicated to the Perfect Plastic Repair.
Adv Sci (Weinh). 2025 Jun;12(24):e2409884. doi: 10.1002/advs.202409884. Epub 2024 Dec 16.
6
Stimuli-responsive microcarriers and their application in tissue repair: A review of magnetic and electroactive microcarrier.
Bioact Mater. 2024 May 19;39:147-162. doi: 10.1016/j.bioactmat.2024.05.018. eCollection 2024 Sep.
7
Conductive and alignment-optimized porous fiber conduits with electrical stimulation for peripheral nerve regeneration.
Mater Today Bio. 2024 Apr 18;26:101064. doi: 10.1016/j.mtbio.2024.101064. eCollection 2024 Jun.
8
Electroactive 4D Porous Scaffold Based on Conducting Polymer as a Responsive and Dynamic Cell Culture Platform.
ACS Appl Mater Interfaces. 2024 Feb 7;16(5):5613-5626. doi: 10.1021/acsami.3c16686. Epub 2024 Jan 26.
9
Advances in Conductive Hydrogel for Spinal Cord Injury Repair and Regeneration.
Int J Nanomedicine. 2023 Dec 6;18:7305-7333. doi: 10.2147/IJN.S436111. eCollection 2023.
10
Electroconductivity, a regenerative engineering approach to reverse rotator cuff muscle degeneration.
Regen Biomater. 2023 Nov 11;10:rbad099. doi: 10.1093/rb/rbad099. eCollection 2023.

本文引用的文献

1
Combined effects of electromagnetic fields on immune and nervous responses.
Int J Immunopathol Pharmacol. 2007 Apr-Jun;20(2 Suppl 2):59-63. doi: 10.1177/03946320070200S212.
2
Expanding use of pulsed electromagnetic field therapies.
Electromagn Biol Med. 2007;26(3):257-74. doi: 10.1080/15368370701580806.
3
Secretion machinery at the cell plasma membrane.
Curr Opin Struct Biol. 2007 Aug;17(4):437-43. doi: 10.1016/j.sbi.2007.07.002. Epub 2007 Aug 30.
4
Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells.
Biophys J. 2007 Nov 15;93(10):3693-702. doi: 10.1529/biophysj.107.107797. Epub 2007 Aug 3.
5
Designed electromagnetic pulsed therapy: clinical applications.
J Cell Physiol. 2007 Sep;212(3):579-82. doi: 10.1002/jcp.21025.
6
The effect of cellular cholesterol on membrane-cytoskeleton adhesion.
J Cell Sci. 2007 Jul 1;120(Pt 13):2223-31. doi: 10.1242/jcs.001370. Epub 2007 Jun 5.
7
Cell mechanics: integrating cell responses to mechanical stimuli.
Annu Rev Biomed Eng. 2007;9:1-34. doi: 10.1146/annurev.bioeng.9.060906.151927.
8
Mechanoregulation of gene expression in fibroblasts.
Gene. 2007 Apr 15;391(1-2):1-15. doi: 10.1016/j.gene.2007.01.014. Epub 2007 Jan 31.
9
Physical manipulation of calcium oscillations facilitates osteodifferentiation of human mesenchymal stem cells.
FASEB J. 2007 May;21(7):1472-80. doi: 10.1096/fj.06-7153com. Epub 2007 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验