Suppr超能文献

植物乳杆菌的电致L-苹果酸转运:从苹果酸-乳酸发酵获取能量的基础。

Electrogenic L-malate transport by Lactobacillus plantarum: a basis for energy derivation from malolactic fermentation.

作者信息

Olsen E B, Russell J B, Henick-Kling T

机构信息

Department of Food Science and Technology, Cornell University, Ithaca, New York 14853.

出版信息

J Bacteriol. 1991 Oct;173(19):6199-206. doi: 10.1128/jb.173.19.6199-6206.1991.

Abstract

L-Malate transport in Lactobacillus plantarum was inducible, and the pH optimum was 4.5. Malate uptake could be driven by an artificial proton gradient (delta pH) or an electroneutral lactate efflux. Because L-lactate efflux was unable to drive L-malate transport in the absence of a delta pH, it did not appear that the carrier was a malate-lactate exchanger. The kinetics of malate transport were, however, biphasic, suggesting that the external malate concentration was also serving as a driving force for low-affinity malate uptake. Because the electrical potential (delta psi, inside negative) inhibited malate transport, it appeared that the malate transport-lactate efflux couple was electrogenic (net negative) at high concentrations of malate. De-energized cells that were provided with malate only generated a large proton motive force (greater than 100 mV) when the malate concentration was greater than 5 mM, and malate only caused an increase in cell yield (glucose-limited chemostats) when malate accumulated in the culture vessel. The use of the malate gradient to drive malate transport (facilitated diffusion) explains how L. plantarum derives energy from malolactic fermentation, a process which does not involve substrate-level phosphorylation.

摘要

植物乳杆菌中L-苹果酸的转运是可诱导的,最适pH为4.5。苹果酸的摄取可以由人工质子梯度(ΔpH)或电中性的乳酸外流驱动。由于在没有ΔpH的情况下L-乳酸外流无法驱动L-苹果酸的转运,因此载体似乎不是苹果酸-乳酸交换体。然而,苹果酸转运的动力学是双相的,这表明外部苹果酸浓度也作为低亲和力苹果酸摄取的驱动力。由于电势(Δψ,内部为负)抑制苹果酸转运,因此在高浓度苹果酸下,苹果酸转运-乳酸外流偶联似乎是生电的(净负)。当苹果酸浓度大于5 mM时,仅提供苹果酸的去能细胞仅产生大的质子动力(大于100 mV),并且当苹果酸在培养容器中积累时,苹果酸仅导致细胞产量增加(葡萄糖限制恒化器)。利用苹果酸梯度驱动苹果酸转运(易化扩散)解释了植物乳杆菌如何从苹果酸-乳酸发酵中获取能量,这一过程不涉及底物水平磷酸化。

相似文献

2
Malolactic fermentation: electrogenic malate uptake and malate/lactate antiport generate metabolic energy.
J Bacteriol. 1991 Oct;173(19):6030-7. doi: 10.1128/jb.173.19.6030-6037.1991.
5
Role of malolactic fermentation in lactic acid bacteria.
Biochimie. 1988 Mar;70(3):375-9. doi: 10.1016/0300-9084(88)90210-6.
6
Uniport of monoanionic L-malate in membrane vesicles from Leuconostoc oenos.
Eur J Biochem. 1994 Oct 1;225(1):289-95. doi: 10.1111/j.1432-1033.1994.00289.x.
8
The proton motive force generated in Leuconostoc oenos by L-malate fermentation.
J Bacteriol. 1996 Jun;178(11):3127-32. doi: 10.1128/jb.178.11.3127-3132.1996.
9
In vitro reassembly of the malolactic fermentation pathway of Leuconostoc oenos (Oenococcus oeni).
J Bacteriol. 1996 Sep;178(18):5537-9. doi: 10.1128/jb.178.18.5537-5539.1996.
10
Malolactic enzyme in Lactobacillus murinus.
Biochimie. 1988 Mar;70(3):357-65. doi: 10.1016/0300-9084(88)90208-8.

引用本文的文献

1
An underlying mechanism for MleR activating the malolactic enzyme pathway to enhance acid tolerance in L9.
Appl Environ Microbiol. 2023 Sep 28;89(9):e0097423. doi: 10.1128/aem.00974-23. Epub 2023 Sep 8.
2
Combination of four bacterial strains isolated from in traditional Japanese sake brewing.
Food Sci Nutr. 2023 Mar 2;11(6):2990-3001. doi: 10.1002/fsn3.3280. eCollection 2023 Jun.
3
Potential factors causing failure of whole plant nettle () silages.
Front Microbiol. 2023 Jan 11;13:1113050. doi: 10.3389/fmicb.2022.1113050. eCollection 2022.
4
Overexpression, purification, crystallization and preliminary structural studies of p-coumaric acid decarboxylase from Lactobacillus plantarum.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007 Apr 1;63(Pt 4):300-3. doi: 10.1107/S1744309107008846. Epub 2007 Mar 12.
5
Growth and Energy Generation by Lactococcus lactis subsp. lactis biovar diacetylactis during Citrate Metabolism.
Appl Environ Microbiol. 1993 Dec;59(12):4216-22. doi: 10.1128/aem.59.12.4216-4222.1993.
7
Surviving the acid test: responses of gram-positive bacteria to low pH.
Microbiol Mol Biol Rev. 2003 Sep;67(3):429-53, table of contents. doi: 10.1128/MMBR.67.3.429-453.2003.
8
9
Flow cytometric assessment of membrane integrity of ethanol-stressed Oenococcus oeni cells.
Appl Environ Microbiol. 2002 Dec;68(12):6087-93. doi: 10.1128/AEM.68.12.6087-6093.2002.
10
Kinetics, stereospecificity, and expression of the malolactic enzyme.
Appl Environ Microbiol. 1999 Aug;65(8):3360-3. doi: 10.1128/AEM.65.8.3360-3363.1999.

本文引用的文献

1
Selection of Streptococcus lactis Mutants Defective in Malolactic Fermentation.
Appl Environ Microbiol. 1987 Feb;53(2):320-4. doi: 10.1128/aem.53.2.320-324.1987.
2
Stimulatory Effect of Malo-Lactic Fermentation on the Growth Rate of Leuconostoc oenos.
Appl Environ Microbiol. 1976 Sep;32(3):405-8. doi: 10.1128/aem.32.3.405-408.1976.
3
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
6
Lactic acid bacteria of wines: stimulation of growth and malolactic fermentation.
Antonie Van Leeuwenhoek. 1983 Sep;49(3):349-52. doi: 10.1007/BF00399509.
7
Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux.
Proc Natl Acad Sci U S A. 1980 Sep;77(9):5502-6. doi: 10.1073/pnas.77.9.5502.
8
The uptake of C4-dicarboxylic acids by Escherichia coli.
Eur J Biochem. 1971 Jan;18(2):274-81. doi: 10.1111/j.1432-1033.1971.tb01240.x.
9
A potassium-dependent citric acid transport system in Aerobacter aerogenes.
Biochem Biophys Res Commun. 1972 Mar 10;46(5):1944-50. doi: 10.1016/0006-291x(72)90074-5.
10
Carbonic acid from decarboxylation by "malic" enzyme in lactic acid bacteria.
J Bacteriol. 1970 Aug;103(2):404-9. doi: 10.1128/jb.103.2.404-409.1970.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验