Zhang Chuanqian, Johnson Duane T, Brazel Christopher S
Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, AL 35487-0203, USA.
IEEE Trans Nanobioscience. 2008 Dec;7(4):267-75. doi: 10.1109/TNB.2008.2011857.
This study develops and solves two-dimensional convective-conductive coupled partial differential equations based on Pennes' bio-heat transfer model using low Curie temperature nanoparticles (LCTNPs) to illustrate thermal behavior quantitatively within tumor-normal composite tissue by establishing a multi-region finite difference algorithm. The model combines NEel relaxation and temperature-variant saturation magnetization derived from Brillouin Equation and Curie-Weiss Law. The numerical results indicate that different deposition patterns of LCTNP and boundary conditions directly effect the steady state temperature distribution. Compared with high Curie temperature nanoparticles (HCTNPs), optimized distributions of LCTNPs within tumorous tissue can be used to control the temperature increase in tumors for hyperthermia treatment using an external magnetic field while healthy tissue surrounding a tumor can be kept closer to normal body tissue, reducing the side effects observed in whole body and regional hyperthermia therapy.
本研究基于彭尼斯生物传热模型,开发并求解了二维对流-传导耦合偏微分方程,使用低居里温度纳米颗粒(LCTNP),通过建立多区域有限差分算法来定量说明肿瘤-正常复合组织内的热行为。该模型结合了由布里渊方程和居里-外斯定律得出的尼尔弛豫和温度变化饱和磁化强度。数值结果表明,LCTNP的不同沉积模式和边界条件直接影响稳态温度分布。与高居里温度纳米颗粒(HCTNP)相比,肿瘤组织内LCTNP的优化分布可用于在使用外部磁场进行热疗时控制肿瘤温度升高,同时可使肿瘤周围的健康组织更接近正常身体组织,减少全身和区域热疗中观察到的副作用。