Huang Jinghuan, Grater Stefan V, Corbellini Francesca, Rinck Sabine, Bock Eva, Kemkemer Ralf, Kessler Horst, Ding Jiandong, Spatz Joachim P
Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China.
Nano Lett. 2009 Mar;9(3):1111-6. doi: 10.1021/nl803548b.
We herein present a novel platform of well-controlled ordered and disordered nanopatterns positioned with a cyclic peptide of arginine-glycine-aspartic acid (RGD) on a bioinert poly(ethylene glycol) background, to study whether the nanoscopic order of spatial patterning of the integrin-specific ligands influences osteoblast adhesion. This is the first time that the nanoscale order of RGD ligand patterns was varied quantitatively, and tested for its impact on the adhesion of tissue cells. Our findings reveal that integrin clustering and such adhesion induced by RGD ligands is dependent on the local order of ligand arrangement on a substrate when the global average ligand spacing is larger than 70 nm; i.e., cell adhesion is "turned off" by RGD nanopattern order and "turned on" by the RGD nanopattern disorder if operating at this range of interligand spacing.
我们在此展示了一个新型平台,该平台在生物惰性聚乙二醇背景上具有精确定制的有序和无序纳米图案,并结合了精氨酸 - 甘氨酸 - 天冬氨酸(RGD)环肽,以研究整联蛋白特异性配体的空间图案纳米级有序性是否会影响成骨细胞粘附。这是首次对RGD配体图案的纳米级有序性进行定量改变,并测试其对组织细胞粘附的影响。我们的研究结果表明,当全局平均配体间距大于70 nm时,RGD配体诱导的整联蛋白聚集和此类粘附取决于配体在底物上的局部排列顺序;也就是说,在此配体间距范围内操作时,细胞粘附会被RGD纳米图案的有序性“关闭”,并被RGD纳米图案的无序性“开启”。