Suppr超能文献

伦勃朗:通过整合转化研究助力个性化医疗成为现实。

Rembrandt: helping personalized medicine become a reality through integrative translational research.

作者信息

Madhavan Subha, Zenklusen Jean-Claude, Kotliarov Yuri, Sahni Himanso, Fine Howard A, Buetow Kenneth

机构信息

Center for Biomedical Informatics and Information Technology, Neuro-Oncology Branch, National Cancer Institute, Bethesda, MD 20892, USA.

出版信息

Mol Cancer Res. 2009 Feb;7(2):157-67. doi: 10.1158/1541-7786.MCR-08-0435. Epub 2009 Feb 10.

Abstract

Finding better therapies for the treatment of brain tumors is hampered by the lack of consistently obtained molecular data in a large sample set and the ability to integrate biomedical data from disparate sources enabling translation of therapies from bench to bedside. Hence, a critical factor in the advancement of biomedical research and clinical translation is the ease with which data can be integrated, redistributed, and analyzed both within and across functional domains. Novel biomedical informatics infrastructure and tools are essential for developing individualized patient treatment based on the specific genomic signatures in each patient's tumor. Here, we present Repository of Molecular Brain Neoplasia Data (Rembrandt), a cancer clinical genomics database and a Web-based data mining and analysis platform aimed at facilitating discovery by connecting the dots between clinical information and genomic characterization data. To date, Rembrandt contains data generated through the Glioma Molecular Diagnostic Initiative from 874 glioma specimens comprising approximately 566 gene expression arrays, 834 copy number arrays, and 13,472 clinical phenotype data points. Data can be queried and visualized for a selected gene across all data platforms or for multiple genes in a selected platform. Additionally, gene sets can be limited to clinically important annotations including secreted, kinase, membrane, and known gene-anomaly pairs to facilitate the discovery of novel biomarkers and therapeutic targets. We believe that Rembrandt represents a prototype of how high-throughput genomic and clinical data can be integrated in a way that will allow expeditious and efficient translation of laboratory discoveries to the clinic.

摘要

在大型样本集中缺乏持续获取的分子数据,以及缺乏整合来自不同来源的生物医学数据从而实现从实验室到临床治疗转化的能力,这阻碍了寻找更好的脑肿瘤治疗方法。因此,生物医学研究和临床转化进展的一个关键因素是数据在功能域内和跨功能域进行整合、重新分配和分析的难易程度。新型生物医学信息学基础设施和工具对于基于每个患者肿瘤的特定基因组特征开发个性化患者治疗至关重要。在此,我们展示了分子脑肿瘤数据储存库(Rembrandt),这是一个癌症临床基因组数据库以及一个基于网络的数据挖掘和分析平台,旨在通过连接临床信息和基因组特征数据之间的点来促进发现。迄今为止,Rembrandt包含通过胶质瘤分子诊断计划从874个胶质瘤标本中生成的数据,这些标本包括大约566个基因表达阵列、834个拷贝数阵列以及13472个临床表型数据点。可以在所有数据平台上针对选定基因或在选定平台上针对多个基因查询和可视化数据。此外,基因集可以限于包括分泌型、激酶、膜以及已知基因异常对在内的临床重要注释,以促进新型生物标志物和治疗靶点的发现。我们相信Rembrandt代表了一种高通量基因组和临床数据能够以允许将实验室发现迅速且高效地转化到临床的方式进行整合的原型。

相似文献

引用本文的文献

本文引用的文献

3
4
The 2007 WHO classification of tumours of the central nervous system.2007年世界卫生组织中枢神经系统肿瘤分类
Acta Neuropathol. 2007 Aug;114(2):97-109. doi: 10.1007/s00401-007-0243-4. Epub 2007 Jul 6.
6
GenePattern 2.0.基因模式2.0
Nat Genet. 2006 May;38(5):500-1. doi: 10.1038/ng0506-500.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验