Suppr超能文献

G-DOC:一个个性化肿瘤学的系统医学平台。

G-DOC: a systems medicine platform for personalized oncology.

机构信息

Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA.

出版信息

Neoplasia. 2011 Sep;13(9):771-83. doi: 10.1593/neo.11806.

Abstract

Currently, cancer therapy remains limited by a "one-size-fits-all" approach, whereby treatment decisions are based mainly on the clinical stage of disease, yet fail to reference the individual's underlying biology and its role driving malignancy. Identifying better personalized therapies for cancer treatment is hindered by the lack of high-quality "omics" data of sufficient size to produce meaningful results and the ability to integrate biomedical data from disparate technologies. Resolving these issues will help translation of therapies from research to clinic by helping clinicians develop patient-specific treatments based on the unique signatures of patient's tumor. Here we describe the Georgetown Database of Cancer (G-DOC), a Web platform that enables basic and clinical research by integrating patient characteristics and clinical outcome data with a variety of high-throughput research data in a unified environment. While several rich data repositories for high-dimensional research data exist in the public domain, most focus on a single-data type and do not support integration across multiple technologies. Currently, G-DOC contains data from more than 2500 breast cancer patients and 800 gastrointestinal cancer patients, G-DOC includes a broad collection of bioinformatics and systems biology tools for analysis and visualization of four major "omics" types: DNA, mRNA, microRNA, and metabolites. We believe that G-DOC will help facilitate systems medicine by providing identification of trends and patterns in integrated data sets and hence facilitate the use of better targeted therapies for cancer. A set of representative usage scenarios is provided to highlight the technical capabilities of this resource.

摘要

目前,癌症治疗仍然受到“一刀切”方法的限制,这种方法主要基于疾病的临床阶段来做出治疗决策,但未能参考个体的潜在生物学及其驱动恶性肿瘤的作用。为癌症治疗确定更好的个性化疗法受到阻碍,原因是缺乏足够大小的高质量“组学”数据来产生有意义的结果,并且无法整合来自不同技术的生物医学数据。解决这些问题将有助于将疗法从研究转化为临床,帮助临床医生根据患者肿瘤的独特特征为患者制定特定的治疗方案。在这里,我们描述了 Georgetown 癌症数据库 (G-DOC),这是一个 Web 平台,通过在统一环境中整合患者特征和临床结果数据以及各种高通量研究数据,支持基础和临床研究。虽然公共领域存在几个用于高维研究数据的丰富数据存储库,但大多数都专注于单一数据类型,不支持跨多种技术进行集成。目前,G-DOC 包含来自 2500 多名乳腺癌患者和 800 多名胃肠道癌症患者的数据,G-DOC 包含广泛的生物信息学和系统生物学工具,用于分析和可视化四种主要的“组学”类型:DNA、mRNA、microRNA 和代谢物。我们相信,G-DOC 将通过在集成数据集的识别趋势和模式,帮助促进系统医学,从而促进更好的针对癌症的靶向治疗的使用。提供了一组代表性的使用场景,以突出该资源的技术功能。

相似文献

1
G-DOC: a systems medicine platform for personalized oncology.
Neoplasia. 2011 Sep;13(9):771-83. doi: 10.1593/neo.11806.
2
G-DOC Plus - an integrative bioinformatics platform for precision medicine.
BMC Bioinformatics. 2016 Apr 30;17(1):193. doi: 10.1186/s12859-016-1010-0.
4
Rembrandt: helping personalized medicine become a reality through integrative translational research.
Mol Cancer Res. 2009 Feb;7(2):157-67. doi: 10.1158/1541-7786.MCR-08-0435. Epub 2009 Feb 10.
5
Bioinformatics Resource Manager: a systems biology web tool for microRNA and omics data integration.
BMC Bioinformatics. 2019 May 17;20(1):255. doi: 10.1186/s12859-019-2805-6.
6
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
7
Patient-specific multi-omics models and the application in personalized combination therapy.
Future Oncol. 2020 Aug;16(23):1737-1750. doi: 10.2217/fon-2020-0119. Epub 2020 May 28.
8
Metabolomics Applications in Precision Medicine: An Oncological Perspective.
Curr Top Med Chem. 2017;17(24):2740-2751. doi: 10.2174/1568026617666170707120034.
9
Translational research platforms integrating clinical and omics data: a review of publicly available solutions.
Brief Bioinform. 2015 Mar;16(2):280-90. doi: 10.1093/bib/bbu006. Epub 2014 Mar 7.
10
The Need for Multi-Omics Biomarker Signatures in Precision Medicine.
Int J Mol Sci. 2019 Sep 26;20(19):4781. doi: 10.3390/ijms20194781.

引用本文的文献

2
PMBC: a manually curated database for prognostic markers of breast cancer.
Database (Oxford). 2024 May 15;2024. doi: 10.1093/database/baae033.
6
Cell Lineage-Based Stratification for Glioblastoma.
Cancer Cell. 2020 Sep 14;38(3):366-379.e8. doi: 10.1016/j.ccell.2020.06.003. Epub 2020 Jul 9.
8
Recent advances in "smart" delivery systems for extended drug release in cancer therapy.
Int J Nanomedicine. 2018 Aug 20;13:4727-4745. doi: 10.2147/IJN.S168053. eCollection 2018.
9
The REMBRANDT study, a large collection of genomic data from brain cancer patients.
Sci Data. 2018 Aug 14;5:180158. doi: 10.1038/sdata.2018.158.

本文引用的文献

1
Translational bioinformatics: linking knowledge across biological and clinical realms.
J Am Med Inform Assoc. 2011 Jul-Aug;18(4):354-7. doi: 10.1136/amiajnl-2011-000245. Epub 2011 May 10.
2
Pediatric palliative care and eHealth opportunities for patient-centered care.
Am J Prev Med. 2011 May;40(5 Suppl 2):S208-16. doi: 10.1016/j.amepre.2011.01.013.
3
Serum microRNAs as non-invasive biomarkers for cancer.
Mol Cancer. 2010 Nov 26;9:306. doi: 10.1186/1476-4598-9-306.
4
The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored.
Nucleic Acids Res. 2011 Jan;39(Database issue):D561-8. doi: 10.1093/nar/gkq973. Epub 2010 Nov 2.
5
miRBase: integrating microRNA annotation and deep-sequencing data.
Nucleic Acids Res. 2011 Jan;39(Database issue):D152-7. doi: 10.1093/nar/gkq1027. Epub 2010 Oct 30.
6
Genome profiling of ERBB2-amplified breast cancers.
BMC Cancer. 2010 Oct 8;10:539. doi: 10.1186/1471-2407-10-539.
7
Systems medicine: a real approach for future personalized oncology?
Pharmacogenomics. 2010 Mar;11(3):283-7. doi: 10.2217/pgs.10.36.
8
Plasma microRNAs are promising novel biomarkers for early detection of colorectal cancer.
Int J Cancer. 2010 Jul 1;127(1):118-26. doi: 10.1002/ijc.25007.
9
JBrowse: a next-generation genome browser.
Genome Res. 2009 Sep;19(9):1630-8. doi: 10.1101/gr.094607.109. Epub 2009 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验