Baquero F
Department of Microbiology-FIBio-RYC, CIBER-ESP and CSIC-Associated Unit on Bacterial Pathogenesis and Resistance, Ramón y Cajal University Hospital, Madrid, Spain.
Clin Microbiol Infect. 2009 Jan;15 Suppl 1:5-10. doi: 10.1111/j.1469-0691.2008.02677.x.
The sustainability of life on the planet depends on the preservation of the existing microbial systems, which constitutes our major "biological atmosphere". The detection of variations in microbial systems as a result of anthropogenic or natural changes is critical both to detect and assess risks and to programme specific interventions. Changes in microbial systems provokes stress, probably altering the local evolutionary time by changing evolvability (the possibilities of microbes to evolve). Methods should be refined to properly assess diversity in microbial systems. We propose that such diversity estimations should be done on a multi-hierarchical scale, encompassing not only organisms, but sub-cellular entities (e.g. chromosomal domains, plasmids, transposons, integrons, genes, gene modules) and supra-cellular organizations (e.g. clones, populations, communities, ecosystems), applying Hamiltonian criteria of inclusive fitness for the different ensembles. In any of these entities, we can generally identify, in a fractal manner, constant and variable parts. Variation in these entities and ensembles is probably both reduced and increased by environmental stress. Because of that, variation in microbial systems might serve as mirrors or symptoms of the health of the planet.
地球上生命的可持续性取决于现有微生物系统的保存,这些微生物系统构成了我们主要的“生物大气层”。检测由于人为或自然变化导致的微生物系统变化,对于检测和评估风险以及规划具体干预措施都至关重要。微生物系统的变化会引发压力,可能通过改变可进化性(微生物进化的可能性)来改变局部进化时间。应改进方法以正确评估微生物系统的多样性。我们建议,此类多样性估计应在多层次尺度上进行,不仅包括生物体,还包括亚细胞实体(如染色体区域、质粒、转座子、整合子、基因、基因模块)和超细胞组织(如克隆、种群、群落、生态系统),对不同集合应用包含适合度的哈密顿准则。在这些实体中的任何一个中,我们通常可以以分形方式识别出恒定部分和可变部分。环境压力可能会减少或增加这些实体和集合中的变异。正因如此,微生物系统的变异可能充当地球健康状况的镜子或症状。