Gatlin Jesse C, Matov Alexandre, Groen Aaron C, Needleman Daniel J, Maresca Thomas J, Danuser Gaudenz, Mitchison Timothy J, Salmon E D
Marine Biological Laboratory, Woods Hole, MA 02543, USA.
Curr Biol. 2009 Feb 24;19(4):287-96. doi: 10.1016/j.cub.2009.01.055.
Bipolar spindle assembly is critical for achieving accurate segregation of chromosomes. In the absence of centrosomes, meiotic spindles achieve bipolarity by a combination of chromosome-initiated microtubule nucleation and stabilization and motor-driven organization of microtubules. Once assembled, the spindle structure is maintained on a relatively long time scale despite the high turnover of the microtubules that comprise it. To study the underlying mechanisms responsible for spindle assembly and steady-state maintenance, we used microneedle manipulation of preassembled spindles in Xenopus egg extracts.
When two meiotic spindles were brought close enough together, they interacted, creating an interconnected microtubule structure with supernumerary poles. Without exception, the perturbed system eventually re-established bipolarity, forming a single spindle of normal shape and size. Bipolar spindle fusion was blocked when cytoplasmic dynein function was perturbed, suggesting a critical role for the motor in this process. The fusion of Eg5-inhibited monopoles also required dynein function but only occurred if the initial interpolar separation was less than twice the microtubule radius of a typical monopole.
Our experiments uniquely illustrate the architectural plasticity of the spindle and reveal a robust ability of the system to attain a bipolar morphology. We hypothesize that a major mechanism driving spindle fusion is dynein-mediated sliding of oppositely oriented microtubules, a novel function for the motor, and posit that this same mechanism might also be involved in normal spindle assembly and homeostasis.
双极纺锤体组装对于实现染色体的精确分离至关重要。在没有中心体的情况下,减数分裂纺锤体通过染色体引发的微管成核和稳定以及微管的马达驱动组织相结合来实现双极性。一旦组装完成,尽管构成纺锤体的微管周转速度很快,但纺锤体结构在相对较长的时间尺度上得以维持。为了研究纺锤体组装和稳态维持的潜在机制,我们在非洲爪蟾卵提取物中对预组装的纺锤体进行了微针操作。
当两个减数分裂纺锤体靠得足够近时,它们会相互作用,形成一个具有多余极的相互连接的微管结构。无一例外,受干扰的系统最终会重新建立双极性,形成一个形状和大小正常的单个纺锤体。当细胞质动力蛋白功能受到干扰时,双极纺锤体融合被阻断,这表明该马达在这一过程中起关键作用。Eg5抑制的单极融合也需要动力蛋白功能,但只有当初始极间距离小于典型单极微管半径的两倍时才会发生。
我们的实验独特地说明了纺锤体的结构可塑性,并揭示了该系统获得双极形态的强大能力。我们假设驱动纺锤体融合的一个主要机制是动力蛋白介导的相反方向微管的滑动,这是该马达的一种新功能,并推测这一相同机制可能也参与正常的纺锤体组装和稳态。