Wittmann T, Boleti H, Antony C, Karsenti E, Vernos I
European Molecular Biology Laboratory, Cell Biology and Cell Biophysics Programs, D-69117 Heidelberg, Germany.
J Cell Biol. 1998 Nov 2;143(3):673-85. doi: 10.1083/jcb.143.3.673.
Xklp2 is a plus end-directed Xenopus kinesin-like protein localized at spindle poles and required for centrosome separation during spindle assembly in Xenopus egg extracts. A glutathione-S-transferase fusion protein containing the COOH-terminal domain of Xklp2 (GST-Xklp2-Tail) was previously found to localize to spindle poles (Boleti, H., E. Karsenti, and I. Vernos. 1996. Cell. 84:49-59). Now, we have examined the mechanism of localization of GST-Xklp2-Tail. Immunofluorescence and electron microscopy showed that Xklp2 and GST-Xklp2-Tail localize specifically to the minus ends of spindle pole and aster microtubules in mitotic, but not in interphase, Xenopus egg extracts. We found that dimerization and a COOH-terminal leucine zipper are required for this localization: a single point mutation in the leucine zipper prevented targeting. The mechanism of localization is complex and two additional factors in mitotic egg extracts are required for the targeting of GST-Xklp2-Tail to microtubule minus ends: (a) a novel 100-kD microtubule-associated protein that we named TPX2 (Targeting protein for Xklp2) that mediates the binding of GST-Xklp2-Tail to microtubules and (b) the dynein-dynactin complex that is required for the accumulation of GST-Xklp2-Tail at microtubule minus ends. We propose two molecular mechanisms that could account for the localization of Xklp2 to microtubule minus ends.
Xklp2是一种定位于纺锤体极的、向微管正端移动的非洲爪蟾类驱动蛋白样蛋白,在非洲爪蟾卵提取物的纺锤体组装过程中,它是中心体分离所必需的。先前发现,一种含有Xklp2羧基末端结构域的谷胱甘肽-S-转移酶融合蛋白(GST-Xklp2-Tail)定位于纺锤体极(博莱蒂,H.,E. 卡尔森蒂,和I. 韦尔诺斯。1996年。《细胞》。84:49 - 59)。现在,我们研究了GST-Xklp2-Tail的定位机制。免疫荧光和电子显微镜显示,在有丝分裂期而非间期的非洲爪蟾卵提取物中,Xklp2和GST-Xklp2-Tail特异性地定位于纺锤体极和星体微管的负端。我们发现,这种定位需要二聚化和羧基末端亮氨酸拉链:亮氨酸拉链中的单点突变会阻止靶向定位。定位机制很复杂,有丝分裂期卵提取物中的另外两个因子是GST-Xklp2-Tail靶向微管负端所必需的:(a)一种新的100-kD微管相关蛋白,我们将其命名为TPX2(Xklp2的靶向蛋白),它介导GST-Xklp2-Tail与微管的结合;(b)动力蛋白-动力蛋白激活蛋白复合体,它是GST-Xklp2-Tail在微管负端积累所必需的。我们提出了两种可能解释Xklp2定位于微管负端的分子机制。