Suppr超能文献

微环境机械应力通过抑制癌细胞增殖和诱导其凋亡来控制肿瘤球体的大小和形态。

Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells.

作者信息

Cheng Gang, Tse Janet, Jain Rakesh K, Munn Lance L

机构信息

Edwin L. Steele Laboratory of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America.

出版信息

PLoS One. 2009;4(2):e4632. doi: 10.1371/journal.pone.0004632. Epub 2009 Feb 27.

Abstract

BACKGROUND

Compressive mechanical stress produced during growth in a confining matrix limits the size of tumor spheroids, but little is known about the dynamics of stress accumulation, how the stress affects cancer cell phenotype, or the molecular pathways involved.

METHODOLOGY/PRINCIPAL FINDINGS: We co-embedded single cancer cells with fluorescent micro-beads in agarose gels and, using confocal microscopy, recorded the 3D distribution of micro-beads surrounding growing spheroids. The change in micro-bead density was then converted to strain in the gel, from which we estimated the spatial distribution of compressive stress around the spheroids. We found a strong correlation between the peri-spheroid solid stress distribution and spheroid shape, a result of the suppression of cell proliferation and induction of apoptotic cell death in regions of high mechanical stress. By compressing spheroids consisting of cancer cells overexpressing anti-apoptotic genes, we demonstrate that mechanical stress-induced apoptosis occurs via the mitochondrial pathway.

CONCLUSIONS/SIGNIFICANCE: Our results provide detailed, quantitative insight into the role of micro-environmental mechanical stress in tumor spheroid growth dynamics, and suggest how tumors grow in confined locations where the level of solid stress becomes high. An important implication is that apoptosis via the mitochondrial pathway, induced by compressive stress, may be involved in tumor dormancy, in which tumor growth is held in check by a balance of apoptosis and proliferation.

摘要

背景

在受限基质中生长过程中产生的压缩机械应力限制了肿瘤球体的大小,但对应力积累的动态过程、应力如何影响癌细胞表型或所涉及的分子途径知之甚少。

方法/主要发现:我们将单个癌细胞与荧光微珠共嵌入琼脂糖凝胶中,并使用共聚焦显微镜记录围绕生长中的球体的微珠的三维分布。然后将微珠密度的变化转换为凝胶中的应变,据此我们估算了球体周围压缩应力的空间分布。我们发现球体周围固体应力分布与球体形状之间存在很强的相关性,这是高机械应力区域中细胞增殖受到抑制和凋亡性细胞死亡被诱导的结果。通过压缩由过表达抗凋亡基因的癌细胞组成的球体,我们证明机械应力诱导的凋亡是通过线粒体途径发生的。

结论/意义:我们的结果提供了关于微环境机械应力在肿瘤球体生长动态中的作用的详细、定量见解,并表明肿瘤在固体应力水平较高的受限位置如何生长。一个重要的启示是,由压缩应力诱导的通过线粒体途径的凋亡可能参与肿瘤休眠,在肿瘤休眠中肿瘤生长通过凋亡和增殖的平衡受到抑制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd89/2645686/c0eb3aced83e/pone.0004632.g001.jpg

相似文献

2
Solid stress generated by spheroid growth estimated using a linear poroelasticity model.
Microvasc Res. 2003 Nov;66(3):204-12. doi: 10.1016/s0026-2862(03)00057-8.
3
Solid stress facilitates spheroid formation: potential involvement of hyaluronan.
Br J Cancer. 2002 Mar 18;86(6):947-53. doi: 10.1038/sj.bjc.6600158.
4
Solid stress inhibits the growth of multicellular tumor spheroids.
Nat Biotechnol. 1997 Aug;15(8):778-83. doi: 10.1038/nbt0897-778.
5
Growth of confined cancer spheroids: a combined experimental and mathematical modelling approach.
Integr Biol (Camb). 2013 Mar;5(3):597-605. doi: 10.1039/c3ib20252f.
6
Agarose Micro-Well Platform for Rapid Generation of Homogenous 3D Tumor Spheroids.
Curr Protoc. 2021 Jul;1(7):e199. doi: 10.1002/cpz1.199.
9

引用本文的文献

1
Size-dependent invasion and therapeutic phenotype of 42MGBA glioblastoma spheroids.
bioRxiv. 2025 Aug 6:2025.07.09.663980. doi: 10.1101/2025.07.09.663980.
2
Mitochondria-derived nuclear ATP surge protects against confinement-induced proliferation defects.
Nat Commun. 2025 Jul 30;16(1):6613. doi: 10.1038/s41467-025-61787-x.
5
Biomarkers of mRNA vaccine efficacy derived from mechanistic modeling of tumor-immune interactions.
PLoS Comput Biol. 2025 Jun 12;21(6):e1013163. doi: 10.1371/journal.pcbi.1013163. eCollection 2025 Jun.
6
Solid stress compression enhances breast cancer cell migration through the upregulation of Interleukin-6.
Front Cell Dev Biol. 2025 Apr 30;13:1541953. doi: 10.3389/fcell.2025.1541953. eCollection 2025.
7
The synergistic potential of mechanotherapy and sonopermeation to enhance cancer treatment effectiveness.
NPJ Biol Phys Mech. 2025;2(1):13. doi: 10.1038/s44341-025-00017-3. Epub 2025 May 5.
8
Fluid and solute transport by cells and a model of systemic circulation.
PLoS Comput Biol. 2025 Apr 21;21(4):e1012935. doi: 10.1371/journal.pcbi.1012935. eCollection 2025 Apr.
10
The mechanopathology of the tumor microenvironment: detection techniques, molecular mechanisms and therapeutic opportunities.
Front Cell Dev Biol. 2025 Mar 18;13:1564626. doi: 10.3389/fcell.2025.1564626. eCollection 2025.

本文引用的文献

1
Apoptotic force and tissue dynamics during Drosophila embryogenesis.
Science. 2008 Sep 19;321(5896):1683-6. doi: 10.1126/science.1157052.
2
Radiosensitization of EMT6 mammary carcinoma cells by 2-benzoyl-3-phenyl-6,7-dichloroquinoxaline 1,4-dioxide.
Radiother Oncol. 2008 Mar;86(3):412-8. doi: 10.1016/j.radonc.2007.10.013. Epub 2007 Nov 19.
3
Mechanotransduction from the ECM to the genome: are the pieces now in place?
J Cell Biochem. 2008 Aug 15;104(6):1964-87. doi: 10.1002/jcb.21364.
4
Matrix metalloproteinases and tumor metastasis.
Cancer Metastasis Rev. 2006 Mar;25(1):9-34. doi: 10.1007/s10555-006-7886-9.
5
Pulsatile dynamic stiffness of cartilage-like materials and use of agarose gels to validate mechanical methods and models.
J Biomed Mater Res B Appl Biomater. 2006 Aug;78(2):347-57. doi: 10.1002/jbm.b.30494.
6
Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy.
Science. 2005 Jan 7;307(5706):58-62. doi: 10.1126/science.1104819.
7
Universal law of tumor growth.
J Theor Biol. 2004 Aug 7;229(3):289. doi: 10.1016/j.jtbi.2004.04.008.
8
Pathology: cancer cells compress intratumour vessels.
Nature. 2004 Feb 19;427(6976):695. doi: 10.1038/427695a.
9
Does tumor growth follow a "universal law"?
J Theor Biol. 2003 Nov 21;225(2):147-51. doi: 10.1016/s0022-5193(03)00221-2.
10
DYNAMICS OF TUMOR GROWTH.
Br J Cancer. 1964 Sep;13(3):490-502. doi: 10.1038/bjc.1964.55.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验