Suppr超能文献

不同真菌中的特殊糖感知

Specialized sugar sensing in diverse fungi.

作者信息

Brown Victoria, Sabina Jeffrey, Johnston Mark

机构信息

Department of Genetics, Center for Genome Sciences, Washington University School of Medicine, St. Louis, MO 63108, USA.

出版信息

Curr Biol. 2009 Mar 10;19(5):436-41. doi: 10.1016/j.cub.2009.01.056. Epub 2009 Feb 26.

Abstract

S. cerevisiae senses glucose and galactose differently. Glucose is detected through sensors that reside in the cellular plasma membrane. When activated, the sensors initiate a signal-transduction cascade that ultimately inactivates the Rgt1 transcriptional repressor by causing degradation of its corepressors Mth1 and Std1. This results in the expression of many HXT genes encoding glucose transporters. The ensuing flood of glucose into the cell activates Mig1, a transcriptional repressor that mediates "glucose repression" of many genes, including the GAL genes; hence, glucose sensing hinders galactose utilization. Galactose is sensed in the cytoplasm via Gal3. Upon binding galactose (and ATP), Gal3 sequesters the Gal80 protein, thereby emancipating the Gal4 transcriptional activator of the GAL genes. Gal4 also activates expression of MTH1, encoding a corepressor critical for Rgt1 function. Thus, galactose inhibits glucose assimilation by encouraging repression of HXT genes. C. albicans senses glucose similarly to S. cerevisiae but does not sense galactose through Gal3-Gal80-Gal4. Its genome harbors no GAL80 ortholog, and the severely truncated CaGal4 does not regulate CaGAL genes. We present evidence that C. albicans senses galactose with its Hgt4 glucose sensor, a capability that is enabled by transcriptional "rewiring" of its sugar-sensing signal-transduction pathways. We suggest that galactose sensing through Hgt4 is ancestral in fungi.

摘要

酿酒酵母对葡萄糖和半乳糖的感知方式不同。葡萄糖通过位于细胞质膜中的传感器进行检测。激活后,这些传感器启动一个信号转导级联反应,最终通过导致其共抑制因子Mth1和Std1降解来使Rgt1转录抑制因子失活。这导致许多编码葡萄糖转运蛋白的HXT基因表达。随后大量葡萄糖涌入细胞激活Mig1,Mig1是一种转录抑制因子,介导包括GAL基因在内的许多基因的“葡萄糖抑制”;因此,葡萄糖感知会阻碍半乳糖的利用。半乳糖在细胞质中通过Gal3进行感知。结合半乳糖(和ATP)后,Gal3隔离Gal80蛋白,从而释放GAL基因的Gal4转录激活因子。Gal4还激活MTH1的表达,MTH1编码对Rgt1功能至关重要的共抑制因子。因此,半乳糖通过促进对HXT基因的抑制来抑制葡萄糖同化。白色念珠菌感知葡萄糖的方式与酿酒酵母相似,但不通过Gal3 - Gal80 - Gal4感知半乳糖。其基因组中没有GAL80直系同源物,并且严重截短的CaGal4不调控CaGAL基因。我们提供的证据表明,白色念珠菌通过其Hgt4葡萄糖传感器感知半乳糖,这种能力是由其糖感知信号转导途径的转录“重新布线”实现的。我们认为通过Hgt4感知半乳糖在真菌中是古老的。

相似文献

1
Specialized sugar sensing in diverse fungi.
Curr Biol. 2009 Mar 10;19(5):436-41. doi: 10.1016/j.cub.2009.01.056. Epub 2009 Feb 26.
3
How the Rgt1 transcription factor of Saccharomyces cerevisiae is regulated by glucose.
Genetics. 2005 Feb;169(2):583-94. doi: 10.1534/genetics.104.034512. Epub 2004 Oct 16.
4
Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevisiae.
J Biol Chem. 2006 Sep 8;281(36):26144-9. doi: 10.1074/jbc.M603636200. Epub 2006 Jul 14.
5
Repression of transcription by Rgt1 in the absence of glucose requires Std1 and Mth1.
Curr Genet. 2003 Oct;44(1):19-25. doi: 10.1007/s00294-003-0423-2. Epub 2003 Jul 9.
6
Asymmetric signal transduction through paralogs that comprise a genetic switch for sugar sensing in Saccharomyces cerevisiae.
J Biol Chem. 2009 Oct 23;284(43):29635-43. doi: 10.1074/jbc.M109.032102. Epub 2009 Aug 31.
7
Self-association of the Gal4 inhibitor protein Gal80 is impaired by Gal3: evidence for a new mechanism in the GAL gene switch.
Mol Cell Biol. 2013 Sep;33(18):3667-74. doi: 10.1128/MCB.00646-12. Epub 2013 Jul 15.
8
Grr1-dependent inactivation of Mth1 mediates glucose-induced dissociation of Rgt1 from HXT gene promoters.
Mol Biol Cell. 2003 Aug;14(8):3230-41. doi: 10.1091/mbc.e03-03-0135. Epub 2003 May 18.
9
Mediator acts upstream of the transcriptional activator Gal4.
PLoS Biol. 2012;10(3):e1001290. doi: 10.1371/journal.pbio.1001290. Epub 2012 Mar 27.

引用本文的文献

1
Decoding Pecan's Fungal Foe: A Genomic Insight into Isolate W-6.
J Fungi (Basel). 2025 Mar 5;11(3):203. doi: 10.3390/jof11030203.
2
Machine learning enables identification of an alternative yeast galactose utilization pathway.
Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2315314121. doi: 10.1073/pnas.2315314121. Epub 2024 Apr 26.
6
The evolution of the GALactose utilization pathway in budding yeasts.
Trends Genet. 2022 Jan;38(1):97-106. doi: 10.1016/j.tig.2021.08.013. Epub 2021 Sep 15.
7
Signatures of optimal codon usage in metabolic genes inform budding yeast ecology.
PLoS Biol. 2021 Apr 19;19(4):e3001185. doi: 10.1371/journal.pbio.3001185. eCollection 2021 Apr.
8
Transcriptional control of hyphal morphogenesis in Candida albicans.
FEMS Yeast Res. 2020 Feb 1;20(1). doi: 10.1093/femsyr/foaa005.
9
Sugar Sensing and Signaling in and .
Front Microbiol. 2019 Jan 30;10:99. doi: 10.3389/fmicb.2019.00099. eCollection 2019.
10
A role for Candida albicans superoxide dismutase enzymes in glucose signaling.
Biochem Biophys Res Commun. 2018 Jan 1;495(1):814-820. doi: 10.1016/j.bbrc.2017.11.084. Epub 2017 Nov 14.

本文引用的文献

1
Genome-wide generation of yeast gene deletion strains.
Comp Funct Genomics. 2001;2(4):236-42. doi: 10.1002/cfg.95.
4
The Candida albicans gene HGT12 (orf19.7094) encodes a hexose transporter.
FEMS Immunol Med Microbiol. 2007 Oct;51(1):14-7. doi: 10.1111/j.1574-695X.2007.00274.x. Epub 2007 Jun 15.
5
Transcriptional rewiring of fungal galactose-metabolism circuitry.
Curr Biol. 2007 Jun 19;17(12):1007-13. doi: 10.1016/j.cub.2007.05.017. Epub 2007 May 31.
6
Independent sorting-out of thousands of duplicated gene pairs in two yeast species descended from a whole-genome duplication.
Proc Natl Acad Sci U S A. 2007 May 15;104(20):8397-402. doi: 10.1073/pnas.0608218104. Epub 2007 May 9.
8
A glucose sensor in Candida albicans.
Eukaryot Cell. 2006 Oct;5(10):1726-37. doi: 10.1128/EC.00186-06.
9
Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevisiae.
J Biol Chem. 2006 Sep 8;281(36):26144-9. doi: 10.1074/jbc.M603636200. Epub 2006 Jul 14.
10
Yeasts illustrate the molecular mechanisms of eukaryotic genome evolution.
Trends Genet. 2006 Jul;22(7):375-87. doi: 10.1016/j.tig.2006.05.007. Epub 2006 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验