Leontyev I V, Stuchebrukhov A A
Department of Chemistry, University of California, One Shields Avenue, Davis, California 95616, USA.
J Chem Phys. 2009 Feb 28;130(8):085102. doi: 10.1063/1.3060164.
A simple model for accounting for electronic polarization in molecular dynamics (MD) simulations is discussed. In this model, called molecular dynamics electronic continuum (MDEC), the electronic polarization is treated explicitly in terms of the electronic continuum (EC) approximation, while the nuclear dynamics is described with a fixed-charge force field. In such a force-field all atomic charges are scaled to reflect the screening effect by the electronic continuum. The MDEC model is rather similar but not equivalent to the standard nonpolarizable force-fields; the differences are discussed. Of our particular interest is the calculation of the electrostatic part of solvation energy using standard nonpolarizable MD simulations. In a low-dielectric environment, such as protein, the standard MD approach produces qualitatively wrong results. The difficulty is in mistreatment of the electronic polarizability. We show how the results can be much improved using the MDEC approach. We also show how the dielectric constant of the medium obtained in a MD simulation with nonpolarizable force-field is related to the static (total) dielectric constant, which includes both the nuclear and electronic relaxation effects. Using the MDEC model, we discuss recent calculations of dielectric constants of alcohols and alkanes, and show that the MDEC results are comparable with those obtained with the polarizable Drude oscillator model. The applicability of the method to calculations of dielectric properties of proteins is discussed.
本文讨论了一种用于分子动力学(MD)模拟中考虑电子极化的简单模型。在这个称为分子动力学电子连续介质(MDEC)的模型中,电子极化是根据电子连续介质(EC)近似显式处理的,而核动力学则用固定电荷力场来描述。在这样的力场中,所有原子电荷都进行了缩放,以反映电子连续介质的屏蔽效应。MDEC模型与标准的非极化力场相当相似但并不等同;文中讨论了它们之间的差异。我们特别感兴趣的是使用标准的非极化MD模拟来计算溶剂化能的静电部分。在低介电环境中,如蛋白质中,标准的MD方法会产生定性错误的结果。困难在于对电子极化率的处理不当。我们展示了如何使用MDEC方法显著改善结果。我们还展示了在使用非极化力场的MD模拟中获得的介质介电常数与静态(总)介电常数之间的关系,静态介电常数包括核弛豫和电子弛豫效应。使用MDEC模型,我们讨论了最近对醇类和烷烃介电常数的计算,并表明MDEC结果与使用可极化德鲁德振子模型获得的结果相当。文中还讨论了该方法在蛋白质介电性质计算中的适用性。