Goddard Julie M, Erickson David
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.
Anal Bioanal Chem. 2009 May;394(2):469-79. doi: 10.1007/s00216-009-2731-y. Epub 2009 Mar 12.
We have evaluated five bioconjugation chemistries for immobilizing DNA onto silicon substrates for microfluidic biosensing applications. Conjugation by organosilanes is compared with linkage by carbonyldiimidazole (CDI) activation of silanol groups and utilization of dendrimers. Chemistries were compared in terms of immobilization and hybridization density, stability under microfluidic flow-induced shear stress, and stability after extended storage in aqueous solutions. Conjugation by dendrimer tether provided the greatest hybridization efficiency; however, conjugation by aminosilane treated with glutaraldehyde yielded the greatest immobilization and hybridization densities, as well as enhanced stability to both shear stress and extended storage in an aqueous environment. Direct linkage by CDI activation provided sufficient immobilization and hybridization density and represents a novel DNA bioconjugation strategy. Although these chemistries were evaluated for use in microfluidic biosensors, the results provide meaningful insight to a number of nanobiotechnology applications for which microfluidic devices require surface biofunctionalization, for example vascular prostheses and implanted devices.
我们评估了五种生物共轭化学方法,用于将DNA固定在硅基片上,以用于微流控生物传感应用。将有机硅烷共轭与通过硅烷醇基团的羰基二咪唑(CDI)活化和利用树枝状大分子进行连接的方法进行了比较。从固定化和杂交密度、微流控流动诱导剪切应力下的稳定性以及在水溶液中长时间储存后的稳定性等方面对这些化学方法进行了比较。通过树枝状大分子连接提供了最高的杂交效率;然而,用戊二醛处理的氨基硅烷共轭产生了最大的固定化和杂交密度,以及对剪切应力和在水性环境中长时间储存的增强稳定性。通过CDI活化直接连接提供了足够的固定化和杂交密度,并代表了一种新型的DNA生物共轭策略。尽管这些化学方法是针对微流控生物传感器的应用进行评估的,但结果为许多微流控设备需要表面生物功能化的纳米生物技术应用提供了有意义的见解,例如血管假体和植入式设备。