Suppr超能文献

通过结构引导重组产生的一族热稳定真菌纤维素酶。

A family of thermostable fungal cellulases created by structure-guided recombination.

作者信息

Heinzelman Pete, Snow Christopher D, Wu Indira, Nguyen Catherine, Villalobos Alan, Govindarajan Sridhar, Minshull Jeremy, Arnold Frances H

机构信息

Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5610-5. doi: 10.1073/pnas.0901417106. Epub 2009 Mar 23.

Abstract

SCHEMA structure-guided recombination of 3 fungal class II cellobiohydrolases (CBH II cellulases) has yielded a collection of highly thermostable CBH II chimeras. Twenty-three of 48 genes sampled from the 6,561 possible chimeric sequences were secreted by the Saccharomyces cerevisiae heterologous host in catalytically active form. Five of these chimeras have half-lives of thermal inactivation at 63 degrees C that are greater than the most stable parent, CBH II enzyme from the thermophilic fungus Humicola insolens, which suggests that this chimera collection contains hundreds of highly stable cellulases. Twenty-five new sequences were designed based on mathematical modeling of the thermostabilities for the first set of chimeras. Ten of these sequences were expressed in active form; all 10 retained more activity than H. insolens CBH II after incubation at 63 degrees C. The total of 15 validated thermostable CBH II enzymes have high sequence diversity, differing from their closest natural homologs at up to 63 amino acid positions. Selected purified thermostable chimeras hydrolyzed phosphoric acid swollen cellulose at temperatures 7 to 15 degrees C higher than the parent enzymes. These chimeras also hydrolyzed as much or more cellulose than the parent CBH II enzymes in long-time cellulose hydrolysis assays and had pH/activity profiles as broad, or broader than, the parent enzymes. Generating this group of diverse, thermostable fungal CBH II chimeras is the first step in building an inventory of stable cellulases from which optimized enzyme mixtures for biomass conversion can be formulated.

摘要

对3种真菌II类纤维二糖水解酶(CBH II纤维素酶)进行模式结构引导的重组,已产生了一系列高度耐热的CBH II嵌合体。从6561种可能的嵌合序列中取样的48个基因,有23个由酿酒酵母异源宿主以催化活性形式分泌。其中5种嵌合体在63℃下的热失活半衰期比最稳定的亲本——嗜热真菌特异腐质霉的CBH II酶还要长,这表明该嵌合体文库包含数百种高度稳定的纤维素酶。基于第一组嵌合体热稳定性的数学模型设计了25个新序列。其中10个序列以活性形式表达;在63℃孵育后,所有10个序列保留的活性都比特异腐质霉的CBH II高。总共15种经过验证的耐热CBH II酶具有高度的序列多样性,与其最接近的天然同源物在多达63个氨基酸位置上存在差异。所选纯化的耐热嵌合体在比亲本酶高7至15℃的温度下能水解磷酸膨胀纤维素。在长时间纤维素水解试验中,这些嵌合体水解的纤维素与亲本CBH II酶一样多或更多,并且其pH/活性曲线与亲本酶一样宽或更宽。生成这组多样的、耐热的真菌CBH II嵌合体是构建稳定纤维素酶库的第一步,从中可以配制用于生物质转化的优化酶混合物。

相似文献

1
A family of thermostable fungal cellulases created by structure-guided recombination.
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5610-5. doi: 10.1073/pnas.0901417106. Epub 2009 Mar 23.
2
SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability.
J Biol Chem. 2009 Sep 25;284(39):26229-33. doi: 10.1074/jbc.C109.034058. Epub 2009 Jul 22.
4
The Generation of Thermostable Fungal Laccase Chimeras by SCHEMA-RASPP Structure-Guided Recombination in Vivo.
ACS Synth Biol. 2019 Apr 19;8(4):833-843. doi: 10.1021/acssynbio.8b00509. Epub 2019 Apr 1.
5
Highly thermostable fungal cellobiohydrolase I (Cel7A) engineered using predictive methods.
Protein Eng Des Sel. 2012 Dec;25(12):827-33. doi: 10.1093/protein/gzs058. Epub 2012 Sep 7.
6
Activity and Thermostability of GH5 Endoglucanase Chimeras from Mesophilic and Thermophilic Parents.
Appl Environ Microbiol. 2019 Feb 20;85(5). doi: 10.1128/AEM.02079-18. Print 2019 Mar 1.
8
Engineered thermostable fungal cellulases exhibit efficient synergistic cellulose hydrolysis at elevated temperatures.
Biotechnol Bioeng. 2014 Dec;111(12):2390-7. doi: 10.1002/bit.25308. Epub 2014 Aug 5.
9
Enzymatic properties of cellulases from Humicola insolens.
J Biotechnol. 1997 Sep 16;57(1-3):71-81. doi: 10.1016/s0168-1656(97)00090-4.
10
Engineering chimeric thermostable GH7 cellobiohydrolases in Saccharomyces cerevisiae.
Appl Microbiol Biotechnol. 2014 Apr;98(7):2991-3001. doi: 10.1007/s00253-013-5177-2. Epub 2013 Aug 23.

引用本文的文献

1
Integrated engineering of enzymes and microorganisms for improving the efficiency of industrial lignocellulose deconstruction.
Eng Microbiol. 2021 Oct 29;1:100005. doi: 10.1016/j.engmic.2021.100005. eCollection 2021 Dec.
2
Computational Stabilization of a Non-Heme Iron Enzyme Enables Efficient Evolution of New Function.
Angew Chem Int Ed Engl. 2025 Jan 10;64(2):e202414705. doi: 10.1002/anie.202414705. Epub 2024 Nov 11.
3
Computational stabilization of a non-heme iron enzyme enables efficient evolution of new function.
bioRxiv. 2024 Jul 25:2024.04.18.590141. doi: 10.1101/2024.04.18.590141.
4
Thermotolerance Mechanism of Fungal GH6 Cellobiohydrolase. Part I. Characterization of Thermotolerant Mutant from the Basidiomycete .
J Appl Glycosci (1999). 2024 May 20;71(2):55-62. doi: 10.5458/jag.jag.JAG-2023_0017. eCollection 2024.
5
Thermotolerance Mechanism of Fungal GH6 Cellobiohydrolase. Part II. Structural Analysis of Thermotolerant Mutant from the Basidiomycete .
J Appl Glycosci (1999). 2024 May 20;71(2):63-72. doi: 10.5458/jag.jag.JAG-2023_0018. eCollection 2024.
6
Engineering of glycoside hydrolase family 7 cellobiohydrolases directed by natural diversity screening.
J Biol Chem. 2024 Mar;300(3):105749. doi: 10.1016/j.jbc.2024.105749. Epub 2024 Feb 13.
7
Engineering cellulases for conversion of lignocellulosic biomass.
Protein Eng Des Sel. 2023 Jan 21;36. doi: 10.1093/protein/gzad002.
8
HyperXpress: Rapid Single Vessel DNA Assembly and Protein Production in Microliterscale.
Front Bioeng Biotechnol. 2022 Apr 1;10:832176. doi: 10.3389/fbioe.2022.832176. eCollection 2022.

本文引用的文献

1
Hydrolysis of amorphous and crystalline cellulose by heterologously produced cellulases of Melanocarpus albomyces.
J Biotechnol. 2008 Sep 10;136(3-4):140-7. doi: 10.1016/j.jbiotec.2008.05.010. Epub 2008 May 28.
2
Implications of cellobiohydrolase glycosylation for use in biomass conversion.
Biotechnol Biofuels. 2008 May 1;1(1):10. doi: 10.1186/1754-6834-1-10.
3
A diverse family of thermostable cytochrome P450s created by recombination of stabilizing fragments.
Nat Biotechnol. 2007 Sep;25(9):1051-6. doi: 10.1038/nbt1333. Epub 2007 Aug 26.
4
Thermostable enzymes in lignocellulose hydrolysis.
Adv Biochem Eng Biotechnol. 2007;108:121-45. doi: 10.1007/10_2007_065.
5
Engineering proteinase K using machine learning and synthetic genes.
BMC Biotechnol. 2007 Mar 26;7:16. doi: 10.1186/1472-6750-7-16.
6
Structure-guided SCHEMA recombination of distantly related beta-lactamases.
Protein Eng Des Sel. 2006 Dec;19(12):563-70. doi: 10.1093/protein/gzl045. Epub 2006 Nov 6.
7
Structure-guided recombination creates an artificial family of cytochromes P450.
PLoS Biol. 2006 May;4(5):e112. doi: 10.1371/journal.pbio.0040112. Epub 2006 Apr 11.
10
Site-directed protein recombination as a shortest-path problem.
Protein Eng Des Sel. 2004 Jul;17(7):589-94. doi: 10.1093/protein/gzh067. Epub 2004 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验