Lonsdorf Eric, Kremen Claire, Ricketts Taylor, Winfree Rachael, Williams Neal, Greenleaf Sarah
Conservation and Science Dept, Lincoln Park Zoo, Chicago, IL 60614, USA.
Ann Bot. 2009 Jun;103(9):1589-600. doi: 10.1093/aob/mcp069. Epub 2009 Mar 26.
Crop pollination by bees and other animals is an essential ecosystem service. Ensuring the maintenance of the service requires a full understanding of the contributions of landscape elements to pollinator populations and crop pollination. Here, the first quantitative model that predicts pollinator abundance on a landscape is described and tested.
Using information on pollinator nesting resources, floral resources and foraging distances, the model predicts the relative abundance of pollinators within nesting habitats. From these nesting areas, it then predicts relative abundances of pollinators on the farms requiring pollination services. Model outputs are compared with data from coffee in Costa Rica, watermelon and sunflower in California and watermelon in New Jersey-Pennsylvania (NJPA).
Results from Costa Rica and California, comparing field estimates of pollinator abundance, richness or services with model estimates, are encouraging, explaining up to 80 % of variance among farms. However, the model did not predict observed pollinator abundances on NJPA, so continued model improvement and testing are necessary. The inability of the model to predict pollinator abundances in the NJPA landscape may be due to not accounting for fine-scale floral and nesting resources within the landscapes surrounding farms, rather than the logic of our model.
The importance of fine-scale resources for pollinator service delivery was supported by sensitivity analyses indicating that the model's predictions depend largely on estimates of nesting and floral resources within crops. Despite the need for more research at the finer-scale, the approach fills an important gap by providing quantitative and mechanistic model from which to evaluate policy decisions and develop land-use plans that promote pollination conservation and service delivery.
蜜蜂和其他动物对农作物的授粉是一项至关重要的生态系统服务。要确保这项服务得以维持,就需要全面了解景观要素对传粉者种群数量以及农作物授粉的贡献。本文描述并测试了首个预测景观上传粉者数量的定量模型。
该模型利用传粉者筑巢资源、花卉资源和觅食距离等信息,预测筑巢栖息地内传粉者的相对数量。然后,从这些筑巢区域出发,预测需要授粉服务的农场上传粉者的相对数量。将模型输出结果与来自哥斯达黎加咖啡、加利福尼亚西瓜和向日葵以及新泽西 - 宾夕法尼亚州(NJPA)西瓜的数据进行比较。
在哥斯达黎加和加利福尼亚,将传粉者数量、丰富度或服务的实地估计值与模型估计值进行比较,结果令人鼓舞,模型能够解释各农场间高达80%的差异。然而,该模型未能预测出NJPA地区观察到的传粉者数量,因此需要继续改进和测试模型。模型无法预测NJPA景观上传粉者数量,可能是由于未考虑农场周边景观内精细尺度的花卉和筑巢资源,而非模型逻辑本身的问题。
敏感性分析支持了精细尺度资源对传粉者服务提供的重要性,这表明模型的预测很大程度上依赖于对作物内筑巢和花卉资源的估计。尽管需要在更精细尺度上开展更多研究,但该方法通过提供定量和机制模型填补了一个重要空白,可据此评估政策决策并制定促进授粉保护和服务提供的土地利用规划。