Huang Albert, Abugharbieh Rafeef, Tam Roger
Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
IEEE Trans Biomed Eng. 2009 Jul;56(7):1838-48. doi: 10.1109/TBME.2009.2017509. Epub 2009 Mar 27.
We present a novel 3-D deformable model-based approach for accurate, robust, and automated tissue segmentation of brain MRI data of single as well as multiple magnetic resonance sequences. The main contribution of this study is that we employ an edge-based geodesic active contour for the segmentation task by integrating both image edge geometry and voxel statistical homogeneity into a novel hybrid geometric-statistical feature to regularize contour convergence and extract complex anatomical structures. We validate the accuracy of the segmentation results on simulated brain MRI scans of both single T1-weighted and multiple T1/T2/PD-weighted sequences. We also demonstrate the robustness of the proposed method when applied to clinical brain MRI scans. When compared to a current state-of-the-art region-based level-set segmentation formulation, our white matter and gray matter segmentation resulted in significantly higher accuracy levels with a mean improvement in Dice similarity indexes of 8.55% ( p < 0.0001) and 10.18% ( p < 0.0001), respectively.
我们提出了一种基于三维可变形模型的新方法,用于对单磁共振序列以及多磁共振序列的脑MRI数据进行准确、稳健且自动的组织分割。本研究的主要贡献在于,我们通过将图像边缘几何形状和体素统计同质性整合到一种新型混合几何 - 统计特征中,采用基于边缘的测地线活动轮廓进行分割任务,以规范轮廓收敛并提取复杂的解剖结构。我们在单T1加权和多T1/T2/PD加权序列的模拟脑MRI扫描上验证了分割结果的准确性。我们还展示了所提出方法应用于临床脑MRI扫描时的稳健性。与当前基于区域的水平集分割公式相比,我们的白质和灰质分割在Dice相似性指数上分别有显著更高的准确性水平,平均提高了8.55%(p < 0.0001)和10.18%(p < 0.0001)。