Despotović Ivana, Goossens Bart, Philips Wilfried
Department of Telecommunications and Information Processing TELIN-IPI-iMinds, Ghent University, St-Pietersnieuwstraat 41, 9000 Ghent, Belgium.
Comput Math Methods Med. 2015;2015:450341. doi: 10.1155/2015/450341. Epub 2015 Mar 1.
Image segmentation is one of the most important tasks in medical image analysis and is often the first and the most critical step in many clinical applications. In brain MRI analysis, image segmentation is commonly used for measuring and visualizing the brain's anatomical structures, for analyzing brain changes, for delineating pathological regions, and for surgical planning and image-guided interventions. In the last few decades, various segmentation techniques of different accuracy and degree of complexity have been developed and reported in the literature. In this paper we review the most popular methods commonly used for brain MRI segmentation. We highlight differences between them and discuss their capabilities, advantages, and limitations. To address the complexity and challenges of the brain MRI segmentation problem, we first introduce the basic concepts of image segmentation. Then, we explain different MRI preprocessing steps including image registration, bias field correction, and removal of nonbrain tissue. Finally, after reviewing different brain MRI segmentation methods, we discuss the validation problem in brain MRI segmentation.
图像分割是医学图像分析中最重要的任务之一,并且常常是许多临床应用中的首要也是最关键的步骤。在脑部磁共振成像(MRI)分析中,图像分割通常用于测量和可视化脑部的解剖结构、分析脑部变化、勾勒病理区域以及进行手术规划和图像引导干预。在过去几十年中,文献报道了各种精度和复杂程度不同的分割技术。在本文中,我们回顾了常用于脑部MRI分割的最流行方法。我们突出它们之间的差异,并讨论它们的能力、优点和局限性。为了解决脑部MRI分割问题的复杂性和挑战,我们首先介绍图像分割的基本概念。然后,我们解释不同的MRI预处理步骤,包括图像配准、偏置场校正和非脑组织去除。最后,在回顾了不同的脑部MRI分割方法之后,我们讨论脑部MRI分割中的验证问题。