Débarre Florence, Lenormand Thomas, Gandon Sylvain
Centre d'Ecologie Fonctionnelle et Evolutive, CNRS-UMR 5175, Montpellier, France.
PLoS Comput Biol. 2009 Apr;5(4):e1000337. doi: 10.1371/journal.pcbi.1000337. Epub 2009 Apr 3.
How can we optimize the use of drugs against parasites to limit the evolution of drug resistance? This question has been addressed by many theoretical studies focusing either on the mixing of various treatments, or their temporal alternation. Here we consider a different treatment strategy where the use of the drug may vary in space to prevent the rise of drug-resistance. We analyze epidemiological models where drug-resistant and drug-sensitive parasites compete in a one-dimensional spatially heterogeneous environment. Two different parasite life-cycles are considered: (i) direct transmission between hosts, and (ii) vector-borne transmission. In both cases we find a critical size of the treated area, under which the drug-resistant strain cannot persist. This critical size depends on the basic reproductive ratios of each strain in each environment, on the ranges of dispersal, and on the duration of an infection with drug-resistant parasites. We discuss optimal treatment strategies that limit disease prevalence and the evolution of drug-resistance.
我们如何优化抗寄生虫药物的使用以限制耐药性的演变?许多理论研究都探讨了这个问题,这些研究要么聚焦于不同治疗方法的混合使用,要么关注其时间上的交替使用。在此,我们考虑一种不同的治疗策略,即药物的使用在空间上可能会有所变化,以防止耐药性的产生。我们分析了流行病学模型,其中耐药性寄生虫和药物敏感性寄生虫在一维空间异质环境中相互竞争。我们考虑了两种不同的寄生虫生命周期:(i)宿主之间的直接传播,以及(ii)媒介传播。在这两种情况下,我们都发现了一个治疗区域的临界大小,在这个临界大小以下,耐药菌株无法持续存在。这个临界大小取决于每种菌株在每种环境中的基本繁殖率、扩散范围以及耐药性寄生虫感染的持续时间。我们讨论了限制疾病流行率和耐药性演变的最佳治疗策略。