Suppr超能文献

细胞兴奋性的代偿性变化而非突触缩放,有助于胚胎网络活动的稳态恢复。

Compensatory changes in cellular excitability, not synaptic scaling, contribute to homeostatic recovery of embryonic network activity.

作者信息

Wilhelm Jennifer C, Rich Mark M, Wenner Peter

机构信息

Department of Physiology, Emory University School of Medicine, Atlanta, GA 30322, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6760-5. doi: 10.1073/pnas.0813058106. Epub 2009 Apr 3.

Abstract

When neuronal activity is reduced over a period of days, compensatory changes in synaptic strength and/or cellular excitability are triggered, which are thought to act in a manner to homeostatically recover normal activity levels. The time course over which changes in homeostatic synaptic strength and cellular excitability occur are not clear. Although many studies show that 1-2 days of activity block are necessary to trigger increases in excitatory quantal strength, few studies have been able to examine whether these mechanisms actually underlie recovery of network activity. Here, we examine the mechanisms underlying recovery of embryonic motor activity following block of either excitatory GABAergic or glutamatergic inputs in vivo. We find that GABA(A) receptor blockade triggers fast changes in cellular excitability that occur during the recovery of activity but before changes in synaptic scaling. This increase in cellular excitability is mediated in part by an increase in sodium currents and a reduction in the fast-inactivating and calcium-activated potassium currents. These findings suggest that compensatory changes in cellular excitability, rather than synaptic scaling, contribute to activity recovery. Further, we find a special role for the GABA(A) receptor in triggering several homeostatic mechanisms after activity perturbations, including changes in cellular excitability and GABAergic and AMPAergic synaptic strength. The temporal difference in expression of homeostatic changes in cellular excitability and synaptic strength suggests that there are multiple mechanisms and pathways engaged to regulate network activity, and that each may have temporally distinct functions.

摘要

当神经元活动在数天内减少时,会触发突触强度和/或细胞兴奋性的代偿性变化,这些变化被认为是以一种稳态方式恢复正常活动水平。稳态突触强度和细胞兴奋性变化发生的时间进程尚不清楚。尽管许多研究表明,1至2天的活动阻断对于触发兴奋性量子强度的增加是必要的,但很少有研究能够检验这些机制是否真的是网络活动恢复的基础。在这里,我们研究了体内阻断兴奋性GABA能或谷氨酸能输入后胚胎运动活动恢复的潜在机制。我们发现,GABA(A)受体阻断会触发细胞兴奋性的快速变化,这种变化发生在活动恢复期间,但在突触缩放变化之前。细胞兴奋性的这种增加部分是由钠电流的增加以及快速失活和钙激活钾电流的减少介导的。这些发现表明,细胞兴奋性的代偿性变化而非突触缩放有助于活动恢复。此外,我们发现GABA(A)受体在活动扰动后触发多种稳态机制中具有特殊作用,包括细胞兴奋性以及GABA能和AMPA能突触强度的变化。细胞兴奋性和突触强度稳态变化表达的时间差异表明,存在多种调节网络活动的机制和途径,并且每种机制和途径可能具有不同的时间功能。

相似文献

1
Compensatory changes in cellular excitability, not synaptic scaling, contribute to homeostatic recovery of embryonic network activity.
Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6760-5. doi: 10.1073/pnas.0813058106. Epub 2009 Apr 3.
2
Spontaneous Release Regulates Synaptic Scaling in the Embryonic Spinal Network In Vivo.
J Neurosci. 2016 Jul 6;36(27):7268-82. doi: 10.1523/JNEUROSCI.4066-15.2016.
3
In vivo synaptic scaling is mediated by GluA2-lacking AMPA receptors in the embryonic spinal cord.
J Neurosci. 2013 Apr 17;33(16):6791-9. doi: 10.1523/JNEUROSCI.4025-12.2013.
5
Homeostatic synaptic plasticity in developing spinal networks driven by excitatory GABAergic currents.
Neuropharmacology. 2014 Mar;78:55-62. doi: 10.1016/j.neuropharm.2013.04.058. Epub 2013 May 29.
6
Mechanisms of GABAergic homeostatic plasticity.
Neural Plast. 2011;2011:489470. doi: 10.1155/2011/489470. Epub 2011 Aug 17.
8
Homeostatic Recovery of Embryonic Spinal Activity Initiated by Compensatory Changes in Resting Membrane Potential.
eNeuro. 2020 Jul 7;7(4). doi: 10.1523/ENEURO.0526-19.2020. Print 2020 Jul/Aug.
10
GABAergic synaptic scaling in embryonic motoneurons is mediated by a shift in the chloride reversal potential.
J Neurosci. 2010 Sep 29;30(39):13016-20. doi: 10.1523/JNEUROSCI.1659-10.2010.

引用本文的文献

1
Homeostatic Regulation of Spike Rate within Bursts in Two Distinct Preparations.
eNeuro. 2024 Sep 10;11(9). doi: 10.1523/ENEURO.0259-24.2024. Print 2024 Sep.
3
Homeostatic Regulation of Motoneuron Properties in Development.
Adv Neurobiol. 2022;28:87-107. doi: 10.1007/978-3-031-07167-6_4.
4
Differential neuropeptide modulation of premotor and motor neurons in the lobster cardiac ganglion.
J Neurophysiol. 2020 Oct 1;124(4):1241-1256. doi: 10.1152/jn.00089.2020. Epub 2020 Aug 5.
5
Prenatal exposure to nicotine disrupts synaptic network formation by inhibiting spontaneous correlated wave activity.
IBRO Rep. 2020 Jun 23;9:14-23. doi: 10.1016/j.ibror.2020.06.003. eCollection 2020 Dec.
6
Homeostatic Recovery of Embryonic Spinal Activity Initiated by Compensatory Changes in Resting Membrane Potential.
eNeuro. 2020 Jul 7;7(4). doi: 10.1523/ENEURO.0526-19.2020. Print 2020 Jul/Aug.
7
Homeostatic Intrinsic Plasticity Is Functionally Altered in Fmr1 KO Cortical Neurons.
Cell Rep. 2019 Feb 5;26(6):1378-1388.e3. doi: 10.1016/j.celrep.2019.01.035.
8
NALCN channels enhance the intrinsic excitability of spinal projection neurons.
Pain. 2018 Sep;159(9):1719-1730. doi: 10.1097/j.pain.0000000000001258.
9
The Effects of GABAergic Polarity Changes on Episodic Neural Network Activity in Developing Neural Systems.
Front Comput Neurosci. 2017 Sep 29;11:88. doi: 10.3389/fncom.2017.00088. eCollection 2017.

本文引用的文献

2
The self-tuning neuron: synaptic scaling of excitatory synapses.
Cell. 2008 Oct 31;135(3):422-35. doi: 10.1016/j.cell.2008.10.008.
3
GABAA transmission is a critical step in the process of triggering homeostatic increases in quantal amplitude.
Proc Natl Acad Sci U S A. 2008 Aug 12;105(32):11412-7. doi: 10.1073/pnas.0806037105. Epub 2008 Aug 4.
4
Rapid synaptic scaling induced by changes in postsynaptic firing.
Neuron. 2008 Mar 27;57(6):819-26. doi: 10.1016/j.neuron.2008.02.031.
6
GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations.
Physiol Rev. 2007 Oct;87(4):1215-84. doi: 10.1152/physrev.00017.2006.
7
Neuromodulators, not activity, control coordinated expression of ionic currents.
J Neurosci. 2007 Aug 8;27(32):8709-18. doi: 10.1523/JNEUROSCI.1274-07.2007.
8
Homeostatic regulation of intrinsic excitability and synaptic transmission in a developing visual circuit.
J Neurosci. 2007 Aug 1;27(31):8268-77. doi: 10.1523/JNEUROSCI.1738-07.2007.
9
Homeostatic signaling: the positive side of negative feedback.
Curr Opin Neurobiol. 2007 Jun;17(3):318-24. doi: 10.1016/j.conb.2007.04.004. Epub 2007 Apr 23.
10
Sensing and expressing homeostatic synaptic plasticity.
Trends Neurosci. 2007 Mar;30(3):119-25. doi: 10.1016/j.tins.2007.01.004. Epub 2007 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验