Suppr超能文献

脱氮嘌呤生物合成途径揭示:从鸟苷 5'-三磷酸经四步体外酶促合成 PreQ(0) 。

The deazapurine biosynthetic pathway revealed: in vitro enzymatic synthesis of PreQ(0) from guanosine 5'-triphosphate in four steps.

作者信息

McCarty Reid M, Somogyi Arpád, Lin Guangxin, Jacobsen Neil E, Bandarian Vahe

机构信息

Department of Biochemistry and Molecular Biophysics, University ofArizona, Tucson, Arizona 85721, USA.

出版信息

Biochemistry. 2009 May 12;48(18):3847-52. doi: 10.1021/bi900400e.

Abstract

Deazapurine-containing secondary metabolites comprise a broad range of structurally diverse nucleoside analogues found throughout biology, including various antibiotics produced by species of Streptomyces bacteria and the hypermodified tRNA bases queuosine and archaeosine. Despite early interest in deazapurines as antibiotic, antiviral, and antineoplastic agents, the biosynthetic route toward deazapurine production has remained largely elusive for more than 40 years. Here we present the first in vitro preparation of the deazapurine base preQ(0), by the successive action of four enzymes. The pathway includes the conversion of the recently identified biosynthetic intermediate, 6-carboxy-5,6,7,8-tetrahydropterin, to a novel intermediate, 7-carboxy-7-deazaguanine (CDG), by an unusual transformation catalyzed by Bacillus subtilis QueE, a member of the radical SAM enzyme superfamily. The carboxylate moiety on CDG is converted subsequently to a nitrile to yield preQ(0) by either B. subtilis QueC or Streptomyces rimosus ToyM in an ATP-dependent reaction, in which ammonia serves as the nitrogen source. The results presented here are consistent with early radiotracer studies on deazapurine biosynthesis and provide a unified pathway for the production of deazapurines in nature.

摘要

含脱氮嘌呤的次生代谢产物包括在整个生物界发现的多种结构各异的核苷类似物,其中包括链霉菌属细菌产生的各种抗生素以及超修饰的tRNA碱基queuosine和archaeosine。尽管人们早期对脱氮嘌呤作为抗生素、抗病毒和抗肿瘤药物很感兴趣,但40多年来,脱氮嘌呤的生物合成途径在很大程度上仍然不为人知。在此,我们通过四种酶的连续作用首次在体外制备了脱氮嘌呤碱基preQ(0)。该途径包括通过枯草芽孢杆菌QueE(自由基SAM酶超家族的成员)催化的一种不寻常的转化反应,将最近鉴定出的生物合成中间体6-羧基-5,6,7,8-四氢蝶呤转化为一种新的中间体7-羧基-7-脱氮鸟嘌呤(CDG)。随后,CDG上的羧基部分通过枯草芽孢杆菌QueC或龟裂链霉菌ToyM在依赖ATP的反应中转化为腈,生成preQ(0),其中氨作为氮源。此处呈现的结果与早期关于脱氮嘌呤生物合成的放射性示踪研究一致,并为自然界中脱氮嘌呤的产生提供了一条统一的途径。

相似文献

2
QueE: A Radical SAM Enzyme Involved in the Biosynthesis of 7-Deazapurine Containing Natural Products.
Methods Enzymol. 2018;606:95-118. doi: 10.1016/bs.mie.2018.05.001. Epub 2018 Jul 13.
4
6
7-Deazapurine biosynthesis: NMR study of toyocamycin biosynthesis in Streptomyces rimosus using 2-13C-7-15N-adenine.
Org Biomol Chem. 2011 Apr 7;9(7):2227-32. doi: 10.1039/c0ob01054e. Epub 2011 Feb 7.
8
7-Carboxy-7-deazaguanine Synthase: A Radical S-Adenosyl-l-methionine Enzyme with Polar Tendencies.
J Am Chem Soc. 2017 Feb 8;139(5):1912-1920. doi: 10.1021/jacs.6b11381. Epub 2017 Jan 25.
9
Radical-mediated ring contraction in the biosynthesis of 7-deazapurines.
Curr Opin Struct Biol. 2015 Dec;35:116-24. doi: 10.1016/j.sbi.2015.11.005. Epub 2015 Nov 28.
10
Identification of four genes necessary for biosynthesis of the modified nucleoside queuosine.
J Biol Chem. 2004 Feb 20;279(8):6280-5. doi: 10.1074/jbc.M310858200. Epub 2003 Dec 2.

引用本文的文献

1
Mammalian Queuosine tRNA Modification Impacts Translation to Enhance Cell Proliferation and MHC-II Expression.
J Mol Biol. 2025 Aug 15;437(16):169188. doi: 10.1016/j.jmb.2025.169188. Epub 2025 May 6.
3
Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking.
Chem Rev. 2024 Dec 25;124(24):13574-13659. doi: 10.1021/acs.chemrev.4c00264. Epub 2024 Dec 10.
5
Queuosine biosynthetic enzyme, QueE moonlights as a cell division regulator.
PLoS Genet. 2024 May 20;20(5):e1011287. doi: 10.1371/journal.pgen.1011287. eCollection 2024 May.
7
Biosynthesis and function of 7-deazaguanine derivatives in bacteria and phages.
Microbiol Mol Biol Rev. 2024 Mar 27;88(1):e0019923. doi: 10.1128/mmbr.00199-23. Epub 2024 Feb 29.
8
cGAS goes viral: A conserved immune defense system from bacteria to humans.
Mol Cell. 2024 Jan 4;84(1):120-130. doi: 10.1016/j.molcel.2023.12.005.
10
Calculated p Values for a Series of Aza- and Deaza-Modified Nucleobases.
J Phys Chem A. 2023 Apr 20;127(15):3526-3534. doi: 10.1021/acs.jpca.3c01358. Epub 2023 Apr 10.

本文引用的文献

1
Escherichia coli QueD is a 6-carboxy-5,6,7,8-tetrahydropterin synthase.
Biochemistry. 2009 Mar 24;48(11):2301-3. doi: 10.1021/bi9001437.
2
Biosynthesis of 7-deazaguanosine-modified tRNA nucleosides: a new role for GTP cyclohydrolase I.
J Bacteriol. 2008 Dec;190(24):7876-84. doi: 10.1128/JB.00874-08. Epub 2008 Oct 17.
3
4
5
The Radical SAM Superfamily.
Crit Rev Biochem Mol Biol. 2008 Jan-Feb;43(1):63-88. doi: 10.1080/10409230701829169.
6
Identification of genes encoding tRNA modification enzymes by comparative genomics.
Methods Enzymol. 2007;425:153-83. doi: 10.1016/S0076-6879(07)25007-4.
9
From cyclohydrolase to oxidoreductase: discovery of nitrile reductase activity in a common fold.
Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4264-9. doi: 10.1073/pnas.0408056102. Epub 2005 Mar 14.
10
Identification of four genes necessary for biosynthesis of the modified nucleoside queuosine.
J Biol Chem. 2004 Feb 20;279(8):6280-5. doi: 10.1074/jbc.M310858200. Epub 2003 Dec 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验