McCarty Reid M, Somogyi Arpád, Lin Guangxin, Jacobsen Neil E, Bandarian Vahe
Department of Biochemistry and Molecular Biophysics, University ofArizona, Tucson, Arizona 85721, USA.
Biochemistry. 2009 May 12;48(18):3847-52. doi: 10.1021/bi900400e.
Deazapurine-containing secondary metabolites comprise a broad range of structurally diverse nucleoside analogues found throughout biology, including various antibiotics produced by species of Streptomyces bacteria and the hypermodified tRNA bases queuosine and archaeosine. Despite early interest in deazapurines as antibiotic, antiviral, and antineoplastic agents, the biosynthetic route toward deazapurine production has remained largely elusive for more than 40 years. Here we present the first in vitro preparation of the deazapurine base preQ(0), by the successive action of four enzymes. The pathway includes the conversion of the recently identified biosynthetic intermediate, 6-carboxy-5,6,7,8-tetrahydropterin, to a novel intermediate, 7-carboxy-7-deazaguanine (CDG), by an unusual transformation catalyzed by Bacillus subtilis QueE, a member of the radical SAM enzyme superfamily. The carboxylate moiety on CDG is converted subsequently to a nitrile to yield preQ(0) by either B. subtilis QueC or Streptomyces rimosus ToyM in an ATP-dependent reaction, in which ammonia serves as the nitrogen source. The results presented here are consistent with early radiotracer studies on deazapurine biosynthesis and provide a unified pathway for the production of deazapurines in nature.
含脱氮嘌呤的次生代谢产物包括在整个生物界发现的多种结构各异的核苷类似物,其中包括链霉菌属细菌产生的各种抗生素以及超修饰的tRNA碱基queuosine和archaeosine。尽管人们早期对脱氮嘌呤作为抗生素、抗病毒和抗肿瘤药物很感兴趣,但40多年来,脱氮嘌呤的生物合成途径在很大程度上仍然不为人知。在此,我们通过四种酶的连续作用首次在体外制备了脱氮嘌呤碱基preQ(0)。该途径包括通过枯草芽孢杆菌QueE(自由基SAM酶超家族的成员)催化的一种不寻常的转化反应,将最近鉴定出的生物合成中间体6-羧基-5,6,7,8-四氢蝶呤转化为一种新的中间体7-羧基-7-脱氮鸟嘌呤(CDG)。随后,CDG上的羧基部分通过枯草芽孢杆菌QueC或龟裂链霉菌ToyM在依赖ATP的反应中转化为腈,生成preQ(0),其中氨作为氮源。此处呈现的结果与早期关于脱氮嘌呤生物合成的放射性示踪研究一致,并为自然界中脱氮嘌呤的产生提供了一条统一的途径。