Suppr超能文献

短期收益,长期痛苦:动态环境中关于国家援助学习的线索是怎样的。

Short-term gains, long-term pains: how cues about state aid learning in dynamic environments.

作者信息

Gureckis Todd M, Love Bradley C

机构信息

Department of Psychology, New York University, 6 Washington Place, New York, NY 10003, USA.

Department of Psychology, The University of Texas at Austin, 1 University Station A8000, Austin, Texas 78712, USA.

出版信息

Cognition. 2009 Dec;113(3):293-313. doi: 10.1016/j.cognition.2009.03.013. Epub 2009 May 8.

Abstract

Successful investors seeking returns, animals foraging for food, and pilots controlling aircraft all must take into account how their current decisions will impact their future standing. One challenge facing decision makers is that options that appear attractive in the short-term may not turn out best in the long run. In this paper, we explore human learning in a dynamic decision making task which places short- and long-term rewards in conflict. Our goal in these studies was to evaluate how people's mental representation of a task affects their ability to discover an optimal decision strategy. We find that perceptual cues that readily align with the underlying state of the task environment help people overcome the impulsive appeal of short-term rewards. Our experimental manipulations, predictions, and analyses are motivated by current work in reinforcement learning which details how learners value delayed outcomes in sequential tasks and the importance that "state" identification plays in effective learning.

摘要

寻求回报的成功投资者、觅食的动物以及操控飞机的飞行员都必须考虑他们当前的决策将如何影响其未来状况。决策者面临的一个挑战是,短期内看似有吸引力的选择从长远来看可能并非最佳。在本文中,我们在一个动态决策任务中探索人类学习,该任务使短期和长期奖励产生冲突。我们在这些研究中的目标是评估人们对任务的心理表征如何影响他们发现最优决策策略的能力。我们发现,与任务环境的潜在状态易于匹配的感知线索有助于人们克服短期奖励的冲动吸引力。我们的实验操纵、预测和分析是受强化学习当前研究工作的推动,该研究详细阐述了学习者如何在序列任务中评估延迟结果,以及“状态”识别在有效学习中所起的重要作用。

相似文献

1
Short-term gains, long-term pains: how cues about state aid learning in dynamic environments.
Cognition. 2009 Dec;113(3):293-313. doi: 10.1016/j.cognition.2009.03.013. Epub 2009 May 8.
2
Learning in Noise: Dynamic Decision-Making in a Variable Environment.
J Math Psychol. 2009 Jun;53(3):180-193. doi: 10.1016/j.jmp.2009.02.004.
3
Uncovering the 'state': Tracing the hidden state representations that structure learning and decision-making.
Behav Processes. 2019 Oct;167:103891. doi: 10.1016/j.beproc.2019.103891. Epub 2019 Aug 2.
5
Reward-dependent learning in neuronal networks for planning and decision making.
Prog Brain Res. 2000;126:217-29. doi: 10.1016/S0079-6123(00)26016-0.
6
The curse of planning: dissecting multiple reinforcement-learning systems by taxing the central executive.
Psychol Sci. 2013 May;24(5):751-61. doi: 10.1177/0956797612463080. Epub 2013 Apr 4.
7
The impact of learning on perceptual decisions and its implication for speed-accuracy tradeoffs.
Nat Commun. 2020 Jun 2;11(1):2757. doi: 10.1038/s41467-020-16196-7.
9
Dopamine modulates novelty seeking behavior during decision making.
Behav Neurosci. 2014 Oct;128(5):556-66. doi: 10.1037/a0037128. Epub 2014 Jun 9.
10
Quantifying value-based determinants of drug and non-drug decision dynamics.
Psychopharmacology (Berl). 2021 Aug;238(8):2047-2057. doi: 10.1007/s00213-021-05830-x. Epub 2021 Apr 10.

引用本文的文献

2
Cognitive mechanisms of learning in sequential decision-making under uncertainty: an experimental and theoretical approach.
Front Behav Neurosci. 2024 Aug 12;18:1399394. doi: 10.3389/fnbeh.2024.1399394. eCollection 2024.
3
State-transition-free reinforcement learning in chimpanzees (Pan troglodytes).
Learn Behav. 2023 Dec;51(4):413-427. doi: 10.3758/s13420-023-00591-3. Epub 2023 Jun 27.
4
5
A New Analysis on Self-Control in Intertemporal Choice and Mediterranean Dietary Pattern.
Front Public Health. 2019 Jun 26;7:165. doi: 10.3389/fpubh.2019.00165. eCollection 2019.
6
Reward and avoidance learning in the context of aversive environments and possible implications for depressive symptoms.
Psychopharmacology (Berl). 2019 Aug;236(8):2437-2449. doi: 10.1007/s00213-019-05299-9. Epub 2019 Jun 28.
7
Acute stress improves long-term reward maximization in decision-making under uncertainty.
Brain Cogn. 2019 Jul;133:84-93. doi: 10.1016/j.bandc.2019.02.005. Epub 2019 Mar 4.
8
Predictive Movements and Human Reinforcement Learning of Sequential Action.
Cogn Sci. 2018 Jun;42 Suppl 3(Suppl Suppl 3):783-808. doi: 10.1111/cogs.12599. Epub 2018 Mar 2.
9
Incremental implicit learning of bundles of statistical patterns.
Cognition. 2016 Dec;157:156-173. doi: 10.1016/j.cognition.2016.09.002. Epub 2016 Sep 15.
10

本文引用的文献

1
Regulatory fit effects in a choice task.
Psychon Bull Rev. 2007 Dec;14(6):1125-32. doi: 10.3758/bf03193101.
3
Short-term memory traces for action bias in human reinforcement learning.
Brain Res. 2007 Jun 11;1153:111-21. doi: 10.1016/j.brainres.2007.03.057. Epub 2007 Mar 24.
4
Near-optimal human adaptive control across different noise environments.
J Neurosci. 2006 Oct 18;26(42):10883-7. doi: 10.1523/JNEUROSCI.2238-06.2006.
5
Cortical substrates for exploratory decisions in humans.
Nature. 2006 Jun 15;441(7095):876-9. doi: 10.1038/nature04766.
6
From recurrent choice to skill learning: a reinforcement-learning model.
J Exp Psychol Gen. 2006 May;135(2):184-206. doi: 10.1037/0096-3445.135.2.184.
7
Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control.
Nat Neurosci. 2005 Dec;8(12):1704-11. doi: 10.1038/nn1560. Epub 2005 Nov 6.
8
Comparison of basic assumptions embedded in learning models for experience-based decision making.
Psychon Bull Rev. 2005 Jun;12(3):387-402. doi: 10.3758/bf03193783.
9
The interaction of the explicit and the implicit in skill learning: a dual-process approach.
Psychol Rev. 2005 Jan;112(1):159-92. doi: 10.1037/0033-295X.112.1.159.
10
SUSTAIN: a network model of category learning.
Psychol Rev. 2004 Apr;111(2):309-32. doi: 10.1037/0033-295X.111.2.309.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验