Suppr超能文献

枯草芽孢杆菌分裂体的两步组装动力学

Two-step assembly dynamics of the Bacillus subtilis divisome.

作者信息

Gamba Pamela, Veening Jan-Willem, Saunders Nigel J, Hamoen Leendert W, Daniel Richard A

机构信息

Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Medical School, Framlington Place, Newcastle-upon-Tyne, United Kingdom.

出版信息

J Bacteriol. 2009 Jul;191(13):4186-94. doi: 10.1128/JB.01758-08. Epub 2009 May 8.

Abstract

Cell division in bacteria is carried out by about a dozen proteins which assemble at midcell and form a complex known as the divisome. To study the dynamics and temporal hierarchy of divisome assembly in Bacillus subtilis, we have examined the in vivo localization pattern of a set of division proteins fused to green fluorescent protein in germinating spores and vegetative cells. Using time series and time-lapse microscopy, we show that the FtsZ ring assembles early and concomitantly with FtsA, ZapA, and EzrA. After a time delay of at least 20% of the cell cycle, a second set of division proteins, including GpsB, FtsL, DivIB, FtsW, Pbp2B, and DivIVA, are recruited to midcell. Together, our data provide in vivo evidence for two-step assembly of the divisome. Interestingly, overproduction of FtsZ advances the temporal assembly of EzrA but not of DivIVA, suggesting that a signal different from that of FtsZ polymerization drives the assembly of late divisome proteins. Microarray analysis shows that FtsZ depletion or overexpression does not significantly alter the transcription of division genes, supporting the hypothesis that cell division in B. subtilis is mainly regulated at the posttranscriptional level.

摘要

细菌中的细胞分裂由大约十二种蛋白质完成,这些蛋白质在细胞中部组装,形成一种称为分裂体的复合体。为了研究枯草芽孢杆菌中分裂体组装的动力学和时间层次,我们检测了一组与绿色荧光蛋白融合的分裂蛋白在萌发孢子和营养细胞中的体内定位模式。使用时间序列和延时显微镜,我们发现FtsZ环早期组装,并与FtsA、ZapA和EzrA同时出现。在细胞周期至少20%的时间延迟后,第二组分裂蛋白,包括GpsB、FtsL、DivIB、FtsW、Pbp2B和DivIVA,被招募到细胞中部。总之,我们的数据为分裂体的两步组装提供了体内证据。有趣的是,FtsZ的过量表达提前了EzrA的时间组装,但没有提前DivIVA的组装,这表明与FtsZ聚合不同的信号驱动了后期分裂体蛋白的组装。微阵列分析表明,FtsZ的缺失或过量表达不会显著改变分裂基因的转录,支持了枯草芽孢杆菌中的细胞分裂主要在转录后水平受到调控的假设。

相似文献

1
Two-step assembly dynamics of the Bacillus subtilis divisome.
J Bacteriol. 2009 Jul;191(13):4186-94. doi: 10.1128/JB.01758-08. Epub 2009 May 8.
3
Bacillus subtilis EzrA and FtsL synergistically regulate FtsZ ring dynamics during cell division.
Microbiology (Reading). 2006 Apr;152(Pt 4):1129-1141. doi: 10.1099/mic.0.28497-0.
4
Bacillus subtilis SepF binds to the C-terminus of FtsZ.
PLoS One. 2012;7(8):e43293. doi: 10.1371/journal.pone.0043293. Epub 2012 Aug 13.
5
A membrane protein, EzrA, regulates assembly dynamics of FtsZ by interacting with the C-terminal tail of FtsZ.
Biochemistry. 2007 Sep 25;46(38):11013-22. doi: 10.1021/bi700710j. Epub 2007 Aug 24.
6
Cell Cycle-Dependent Recruitment of FtsN to the Divisome in Escherichia coli.
mBio. 2022 Aug 30;13(4):e0201722. doi: 10.1128/mbio.02017-22. Epub 2022 Aug 15.
7
Single-molecule imaging reveals that Z-ring condensation is essential for cell division in Bacillus subtilis.
Nat Microbiol. 2021 May;6(5):553-562. doi: 10.1038/s41564-021-00878-z. Epub 2021 Mar 18.
9
The Bacillus subtilis DivIVA protein has a sporulation-specific proximity to Spo0J.
J Bacteriol. 2006 Aug;188(16):6039-43. doi: 10.1128/JB.01750-05.

引用本文的文献

2
GpsB interacts with FtsZ in multiple species and may serve as an accessory Z-ring anchor.
Mol Biol Cell. 2025 Jan 1;36(1):ar10. doi: 10.1091/mbc.E24-07-0302. Epub 2024 Nov 27.
3
The microbiome-derived antibacterial lugdunin acts as a cation ionophore in synergy with host peptides.
mBio. 2024 Sep 11;15(9):e0057824. doi: 10.1128/mbio.00578-24. Epub 2024 Aug 12.
4
Stay on track - revelations of bacterial cell wall synthesis enzymes and things that go by single-molecule imaging.
Curr Opin Microbiol. 2024 Jun;79:102490. doi: 10.1016/j.mib.2024.102490. Epub 2024 May 30.
5
FtsZ and PBP4 bind to the conformationally dynamic N-terminal domain of GpsB.
Elife. 2024 Apr 19;13:e85579. doi: 10.7554/eLife.85579.
6
Comparing divisome organization between vegetative and sporulating at the nanoscale using DNA-PAINT.
Sci Adv. 2024 Jan 12;10(2):eadk5847. doi: 10.1126/sciadv.adk5847. Epub 2024 Jan 10.
7
The roles of GpsB and DivIVA in growth and division.
Front Microbiol. 2023 Aug 30;14:1241249. doi: 10.3389/fmicb.2023.1241249. eCollection 2023.
8
Anchors: A way for FtsZ filaments to stay membrane bound.
Mol Microbiol. 2023 Oct;120(4):525-538. doi: 10.1111/mmi.15067. Epub 2023 Apr 28.
9
Identification of anti- agents targeting the interaction of bacterial division proteins FtsZ and SepFe.
Acta Pharm Sin B. 2023 May;13(5):2056-2070. doi: 10.1016/j.apsb.2023.01.022. Epub 2023 Feb 4.
10
Recent Advances in Peptidoglycan Synthesis and Regulation in Bacteria.
Biomolecules. 2023 Apr 22;13(5):720. doi: 10.3390/biom13050720.

本文引用的文献

2
Localization of PBP3 in Caulobacter crescentus is highly dynamic and largely relies on its functional transpeptidase domain.
Mol Microbiol. 2008 Nov;70(3):634-51. doi: 10.1111/j.1365-2958.2008.06432.x. Epub 2008 Sep 10.
3
A sensor histidine kinase co-ordinates cell wall architecture with cell division in Bacillus subtilis.
Mol Microbiol. 2008 Aug;69(3):621-32. doi: 10.1111/j.1365-2958.2008.06308.x. Epub 2008 Jun 28.
4
The great divide: coordinating cell cycle events during bacterial growth and division.
Curr Opin Microbiol. 2008 Apr;11(2):94-9. doi: 10.1016/j.mib.2008.02.008. Epub 2008 Apr 7.
5
Control of the cell elongation-division cycle by shuttling of PBP1 protein in Bacillus subtilis.
Mol Microbiol. 2008 May;68(4):1029-46. doi: 10.1111/j.1365-2958.2008.06210.x. Epub 2008 Mar 19.
6
Bet-hedging and epigenetic inheritance in bacterial cell development.
Proc Natl Acad Sci U S A. 2008 Mar 18;105(11):4393-8. doi: 10.1073/pnas.0700463105. Epub 2008 Mar 6.
7
MinC spatially controls bacterial cytokinesis by antagonizing the scaffolding function of FtsZ.
Curr Biol. 2008 Feb 26;18(4):235-44. doi: 10.1016/j.cub.2008.01.042.
8
A metabolic sensor governing cell size in bacteria.
Cell. 2007 Jul 27;130(2):335-47. doi: 10.1016/j.cell.2007.05.043.
9
The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis.
Mol Microbiol. 2007 Jul;65(1):180-200. doi: 10.1111/j.1365-2958.2007.05782.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验