Suppr超能文献

一种具有生理现实性的微血管网络体外模型。

A physiologically realistic in vitro model of microvascular networks.

机构信息

Department of Mechanical Engineering, Temple University, 1947 N. 12th Street, Philadelphia, PA 19122, USA.

出版信息

Biomed Microdevices. 2009 Oct;11(5):1051-7. doi: 10.1007/s10544-009-9322-8. Epub 2009 May 19.

Abstract

Existing microfluidic devices, e.g. parallel plate flow chambers, do not accurately depict the geometry of microvascular networks in vivo. We have developed a synthetic microvascular network (SMN) on a polydimethalsiloxane (PDMS) chip that can serve as an in vitro model of the bifurcations, tortuosities, and cross-sectional changes found in microvascular networks in vivo. Microvascular networks from a cremaster muscle were mapped using a modified Geographical Information System, and then used to manufacture the SMNs on a PDMS chip. The networks were cultured with bovine aortic endothelial cells (BAEC), which reached confluency 3-4 days after seeding. Propidium iodide staining indicated viable and healthy cells showing normal behavior in these networks. Anti-ICAM-1 conjugated 2-mum microspheres adhered to BAEC cells activated with TNF-alpha in significantly larger numbers compared to control IgG conjugated microspheres. This preferential adhesion suggests that cultured cells retain an intact cytokine response in the SMN. This microfluidic system can provide novel insight into characterization of drug delivery particles and dynamic flow conditions in microvascular networks.

摘要

现有的微流控设备,例如平行板流室,并不能准确地描绘体内微血管网络的几何形状。我们已经在聚二甲基硅氧烷(PDMS)芯片上开发了一种合成微血管网络(SMN),它可以作为体内微血管网络中发现的分支、扭曲和横截面变化的体外模型。使用改良的地理信息系统对提睾肌中的微血管网络进行了映射,然后将其用于在 PDMS 芯片上制造 SMN。在接种后 3-4 天,网络与牛主动脉内皮细胞(BAEC)一起培养达到汇合。碘化丙啶染色表明活细胞和健康细胞在这些网络中表现出正常行为。与对照 IgG 结合的微球相比,与 TNF-α 激活的 BAEC 细胞结合的抗 ICAM-1 共轭 2-μm 微球数量明显增加。这种优先粘附表明,培养的细胞在 SMN 中保留完整的细胞因子反应。该微流控系统可以为药物输送颗粒和微血管网络中的动态流动条件的表征提供新的见解。

相似文献

1
A physiologically realistic in vitro model of microvascular networks.
Biomed Microdevices. 2009 Oct;11(5):1051-7. doi: 10.1007/s10544-009-9322-8. Epub 2009 May 19.
2
Synthetic microvascular networks for quantitative analysis of particle adhesion.
Biomed Microdevices. 2008 Aug;10(4):585-95. doi: 10.1007/s10544-008-9170-y.
3
Bifurcations: focal points of particle adhesion in microvascular networks.
Microcirculation. 2011 Jul;18(5):380-9. doi: 10.1111/j.1549-8719.2011.00099.x.
5
Preferential adhesion of leukocytes near bifurcations is endothelium independent.
Microvasc Res. 2010 Dec;80(3):384-8. doi: 10.1016/j.mvr.2010.07.001. Epub 2010 Jul 21.
6
Endothelialized networks with a vascular geometry in microfabricated poly(dimethyl siloxane).
Biomed Microdevices. 2004 Dec;6(4):269-78. doi: 10.1023/B:BMMD.0000048559.29932.27.
8
Biomimetic microfluidic device for in vitro antihypertensive drug evaluation.
Mol Pharm. 2014 Jul 7;11(7):2009-15. doi: 10.1021/mp5000532. Epub 2014 Apr 7.
9
Traffic of leukocytes in microfluidic channels with rectangular and rounded cross-sections.
Lab Chip. 2011 Oct 7;11(19):3231-40. doi: 10.1039/c1lc20293f. Epub 2011 Aug 17.

引用本文的文献

1
Distinct functional neutrophil phenotypes in sepsis patients correlate with disease severity.
Front Immunol. 2024 Mar 8;15:1341752. doi: 10.3389/fimmu.2024.1341752. eCollection 2024.
3
Cardiovascular human organ-on-a-chip platform for disease modeling, drug development, and personalized therapy.
J Biomed Mater Res A. 2024 Apr;112(4):512-523. doi: 10.1002/jbm.a.37602. Epub 2023 Sep 5.
5
A Microfluidic Platform for Cavitation-Enhanced Drug Delivery.
Micromachines (Basel). 2021 Jun 3;12(6):658. doi: 10.3390/mi12060658.
6
Mechanisms of radiation-induced endothelium damage: Emerging models and technologies.
Radiother Oncol. 2021 May;158:21-32. doi: 10.1016/j.radonc.2021.02.007. Epub 2021 Feb 11.
7
Mechanical Stimulation: A Crucial Element of Organ-on-Chip Models.
Front Bioeng Biotechnol. 2020 Dec 10;8:602646. doi: 10.3389/fbioe.2020.602646. eCollection 2020.
8
Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network.
Small. 2020 Aug;16(33):e2002861. doi: 10.1002/smll.202002861. Epub 2020 Jun 25.
10
Neutrophil-endothelial interactions of murine cells is not a good predictor of their interactions in human cells.
FASEB J. 2020 Feb;34(2):2691-2702. doi: 10.1096/fj.201900048R. Epub 2019 Dec 23.

本文引用的文献

1
Targeted delivery of tacrine into the brain with polysorbate 80-coated poly(n-butylcyanoacrylate) nanoparticles.
Eur J Pharm Biopharm. 2008 Sep;70(1):75-84. doi: 10.1016/j.ejpb.2008.03.009. Epub 2008 Mar 27.
3
Synthetic microvascular networks for quantitative analysis of particle adhesion.
Biomed Microdevices. 2008 Aug;10(4):585-95. doi: 10.1007/s10544-008-9170-y.
4
Design maps for nanoparticles targeting the diseased microvasculature.
Biomaterials. 2008 Jan;29(3):377-84. doi: 10.1016/j.biomaterials.2007.09.025. Epub 2007 Oct 22.
6
Mapping the dynamics of shear stress-induced structural changes in endothelial cells.
Am J Physiol Cell Physiol. 2007 Nov;293(5):C1616-26. doi: 10.1152/ajpcell.00457.2006. Epub 2007 Sep 13.
7
Micro-fluidic and lab-on-a-chip technology.
Ernst Schering Found Symp Proc. 2006(3):21-37. doi: 10.1007/2789_2007_026.
8
Vascular mimetics based on microfluidics for imaging the leukocyte--endothelial inflammatory response.
Lab Chip. 2007 Apr;7(4):448-56. doi: 10.1039/b617915k. Epub 2007 Jan 23.
9
Adhesive dynamics simulations of the shear threshold effect for leukocytes.
Biophys J. 2007 Feb 1;92(3):787-97. doi: 10.1529/biophysj.106.082321. Epub 2006 Nov 3.
10
Interplay between shear stress and adhesion on neutrophil locomotion.
Biophys J. 2007 Jan 15;92(2):632-40. doi: 10.1529/biophysj.105.079418. Epub 2006 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验