Suppr超能文献

用于修复小关节中协调关节面的解剖形状组织工程植入物的快速成型。

Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints.

作者信息

Woodfield T B F, Guggenheim M, von Rechenberg B, Riesle J, van Blitterswijk C A, Wedler V

机构信息

Institute for Biomedical Technology, University of Twente, Enschede, The Netherlands.

出版信息

Cell Prolif. 2009 Aug;42(4):485-97. doi: 10.1111/j.1365-2184.2009.00608.x. Epub 2009 May 22.

Abstract

BACKGROUND

Preliminary studies investigated advanced scaffold design and tissue engineering approaches towards restoring congruent articulating surfaces in small joints.

MATERIALS AND METHODS

Anatomical femoral and tibial cartilage constructs, fabricated by three-dimensional fibre deposition (3DF) or compression moulding/particulate leaching (CM), were evaluated in vitro and in vivo in an autologous rabbit model. Effects of scaffold pore architecture on rabbit chondrocyte differentiation and mechanical properties were evaluated following in vitro culture and subcutaneous implantation in nude mice. After femoral and tibial osteotomy and autologous implantation of tissue-engineered constructs in rabbit knee joints, implant fixation and joint articulation were evaluated.

RESULTS

Rapid prototyping of 3DF architectures with 100% interconnecting pores promoted homogeneous distribution of viable cells, glycosaminoglycan (GAG) and collagen type II; significantly greater GAG content and differentiation capacity (GAG/DNA) in vitro compared to CM architectures; and higher mechanical equilibrium modulus and dynamic stiffness (at 0.1 Hz). Six weeks after implantation, femoral and tibial constructs had integrated with rabbit bone and knee flexion/extension and partial load bearing were regained. Histology demonstrated articulating surfaces between femoral and tibial constructs for CM and 3DF architectures; however, repair tissue appeared fibrocartilage-like and did not resemble implanted cartilage.

CONCLUSIONS

Anatomically shaped, tissue-engineered constructs with designed mechanical properties and internal pore architectures may offer alternatives for reconstruction or restoration of congruent articulating surfaces in small joints.

摘要

背景

初步研究探讨了先进的支架设计和组织工程方法,以恢复小关节中协调的关节表面。

材料与方法

通过三维纤维沉积(3DF)或压缩成型/颗粒沥滤(CM)制造的解剖学形状的股骨和胫骨软骨构建体,在自体兔模型中进行了体外和体内评估。在体外培养和裸鼠皮下植入后,评估了支架孔隙结构对兔软骨细胞分化和力学性能的影响。在兔膝关节进行股骨和胫骨截骨并自体植入组织工程构建体后,评估了植入物的固定和关节活动情况。

结果

具有100%互连孔隙的3DF结构的快速成型促进了活细胞、糖胺聚糖(GAG)和II型胶原的均匀分布;与CM结构相比,体外GAG含量和分化能力(GAG/DNA)显著更高;以及更高的力学平衡模量和动态刚度(在0.1Hz时)。植入六周后,股骨和胫骨构建体已与兔骨整合,膝关节屈伸和部分负重功能得以恢复。组织学显示,CM和3DF结构的股骨和胫骨构建体之间存在关节表面;然而,修复组织呈纤维软骨样,与植入的软骨不同。

结论

具有设计的力学性能和内部孔隙结构的解剖学形状的组织工程构建体,可能为小关节中协调的关节表面的重建或恢复提供替代方案。

相似文献

引用本文的文献

3
Bioprinting: From Tissue and Organ Development to Models.生物打印:从组织和器官发育到模型。
Chem Rev. 2020 Oct 14;120(19):10547-10607. doi: 10.1021/acs.chemrev.9b00789. Epub 2020 May 14.
5
Three-dimensional Printing of Multilayered Tissue Engineering Scaffolds.多层组织工程支架的三维打印
Mater Today (Kidlington). 2018 Oct;21(8):861-874. doi: 10.1016/j.mattod.2018.02.006. Epub 2018 Mar 20.
6
Logistics of Three-dimensional Printing: Primer for Radiologists.三维打印物流:放射科医师入门。
Acad Radiol. 2018 Jan;25(1):40-51. doi: 10.1016/j.acra.2017.08.003. Epub 2017 Oct 10.
7
From intricate to integrated: Biofabrication of articulating joints.从复杂到整合:关节的生物制造
J Orthop Res. 2017 Oct;35(10):2089-2097. doi: 10.1002/jor.23602. Epub 2017 Jun 16.
9
Medical 3D Printing for the Radiologist.面向放射科医生的医学3D打印
Radiographics. 2015 Nov-Dec;35(7):1965-88. doi: 10.1148/rg.2015140320.
10
Strategies for osteochondral repair: Focus on scaffolds.骨软骨修复策略:聚焦于支架。
J Tissue Eng. 2014 Jul 8;5:2041731414541850. doi: 10.1177/2041731414541850. eCollection 2014.

本文引用的文献

1
Combinatorial approaches to controlling cell behaviour and tissue formation in 3D via rapid-prototyping and smart scaffold design.
Comb Chem High Throughput Screen. 2009 Jul;12(6):562-79. doi: 10.2174/138620709788681899.
2
Integrating novel technologies to fabricate smart scaffolds.整合新技术以制造智能支架。
J Biomater Sci Polym Ed. 2008;19(5):543-72. doi: 10.1163/156856208784089571.
5
Osteochondral tissue engineering.骨软骨组织工程
J Biomech. 2007;40(4):750-65. doi: 10.1016/j.jbiomech.2006.03.008. Epub 2006 May 26.
8
Design and assessment of a tissue-engineered model of human phalanges and a small joint.
Orthod Craniofac Res. 2005 Nov;8(4):303-12. doi: 10.1111/j.1601-6343.2005.00353.x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验