Suppr超能文献

腹部增强CT中肾肿瘤的定量与分类

Renal Tumor Quantification and Classification in Contrast-Enhanced Abdominal CT.

作者信息

Linguraru Marius George, Yao Jianhua, Gautam Rabindra, Peterson James, Li Zhixi, Linehan W Marston, Summers Ronald M

机构信息

Diagnostic Radiology Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA.

出版信息

Pattern Recognit. 2009 Jun 1;42(6):1149-1161. doi: 10.1016/j.patcog.2008.09.018.

Abstract

Kidney cancer occurs in both a hereditary (inherited) and sporadic (non-inherited) form. It is estimated that almost a quarter of a million people in the USA are living with kidney cancer and their number increases with 51,000 diagnosed with the disease every year. In clinical practice, the response to treatment is monitored by manual measurements of tumor size, which are 2D, do not reflect the 3D geometry and enhancement of tumors, and show high intra- and inter-operator variability. We propose a computer-assisted radiology tool to assess renal tumors in contrast-enhanced CT for the management of tumor diagnoses and responses to new treatments. The algorithm employs anisotropic diffusion (for smoothing), a combination of fast-marching and geodesic level-sets (for segmentation), and a novel statistical refinement step to adapt to the shape of the lesions. It also quantifies the 3D size, volume and enhancement of the lesion and allows serial management over time. Tumors are robustly segmented and the comparison between manual and semi-automated quantifications shows disparity within the limits of inter-observer variability. The analysis of lesion enhancement for tumor classification shows great separation between cysts, von Hippel-Lindau syndrome lesions and hereditary papillary renal carcinomas (HPRC) with p-values inferior to 0.004. The results on temporal evaluation of tumors from serial scans illustrate the potential of the method to become an important tool for disease monitoring, drug trials and noninvasive clinical surveillance.

摘要

肾癌以遗传性(遗传)和散发性(非遗传)两种形式出现。据估计,美国有近25万人患有肾癌,且每年新增51000例确诊病例。在临床实践中,通过手动测量肿瘤大小来监测治疗反应,这种测量是二维的,无法反映肿瘤的三维几何形状和强化情况,并且在操作者内部和操作者之间存在很大差异。我们提出一种计算机辅助放射学工具,用于在对比增强CT中评估肾肿瘤,以管理肿瘤诊断和对新治疗的反应。该算法采用各向异性扩散(用于平滑)、快速行进和测地线水平集的组合(用于分割)以及一个新颖的统计细化步骤来适应病变的形状。它还可以量化病变的三维大小、体积和强化情况,并允许进行长期的连续管理。肿瘤被稳健地分割,手动和半自动量化之间的比较显示出在观察者间差异范围内的差异。对肿瘤分类的病变强化分析显示,囊肿、冯·希佩尔-林道综合征病变和遗传性乳头状肾癌(HPRC)之间有很大的区分,p值小于0.004。连续扫描对肿瘤进行时间评估的结果表明,该方法有可能成为疾病监测、药物试验和无创临床监测的重要工具。

相似文献

1
Renal Tumor Quantification and Classification in Contrast-Enhanced Abdominal CT.
Pattern Recognit. 2009 Jun 1;42(6):1149-1161. doi: 10.1016/j.patcog.2008.09.018.
2
RENAL TUMOR QUANTIFICATION AND CLASSIFICATION IN TRIPLE-PHASE CONTRAST-ENHANCED ABDOMINAL CT.
Proc IEEE Int Symp Biomed Imaging. 2009 Jun;2009:1310-1313. doi: 10.1109/ISBI.2009.5193305.
3
Automated noninvasive classification of renal cancer on multiphase CT.
Med Phys. 2011 Oct;38(10):5738-46. doi: 10.1118/1.3633898.
4
7
The natural history of renal lesions in von Hippel-Lindau disease: a serial CT study in 28 patients.
AJR Am J Roentgenol. 1992 Dec;159(6):1229-34. doi: 10.2214/ajr.159.6.1442389.

引用本文的文献

1
Unified Focal loss: Generalising Dice and cross entropy-based losses to handle class imbalanced medical image segmentation.
Comput Med Imaging Graph. 2022 Jan;95:102026. doi: 10.1016/j.compmedimag.2021.102026. Epub 2021 Dec 13.
2
Tissue-specific and interpretable sub-segmentation of whole tumour burden on CT images by unsupervised fuzzy clustering.
Comput Biol Med. 2020 May;120:103751. doi: 10.1016/j.compbiomed.2020.103751. Epub 2020 Apr 10.
3
Weakly-supervised convolutional neural networks of renal tumor segmentation in abdominal CTA images.
BMC Med Imaging. 2020 Apr 15;20(1):37. doi: 10.1186/s12880-020-00435-w.
4
3D printed CT-based abdominal structure mannequin for enabling research.
3D Print Med. 2020 Feb 5;6(1):3. doi: 10.1186/s41205-020-0056-9.
5
Family of boundary overlap metrics for the evaluation of medical image segmentation.
J Med Imaging (Bellingham). 2018 Jan;5(1):015006. doi: 10.1117/1.JMI.5.1.015006. Epub 2018 Feb 19.
6
Computer-aided detection of exophytic renal lesions on non-contrast CT images.
Med Image Anal. 2015 Jan;19(1):15-29. doi: 10.1016/j.media.2014.07.005. Epub 2014 Aug 15.
8
Interactive segmentation of plexiform neurofibroma tissue: method and preliminary performance evaluation.
Med Biol Eng Comput. 2012 Aug;50(8):877-84. doi: 10.1007/s11517-012-0929-1. Epub 2012 Jun 16.
9
Automated noninvasive classification of renal cancer on multiphase CT.
Med Phys. 2011 Oct;38(10):5738-46. doi: 10.1118/1.3633898.
10
Spatially adaptive active contours: a semi-automatic tumor segmentation framework.
Int J Comput Assist Radiol Surg. 2010 Jul;5(4):369-84. doi: 10.1007/s11548-010-0477-9. Epub 2010 May 17.

本文引用的文献

1
Targeting VEGF receptors in kidney cancer.
Lancet Oncol. 2007 Nov;8(11):956-7. doi: 10.1016/S1470-2045(07)70322-4.
3
Solid renal cortical tumors: differentiation with CT.
Radiology. 2007 Aug;244(2):494-504. doi: 10.1148/radiol.2442060927.
4
Performance of an automated segmentation algorithm for 3D MR renography.
Magn Reson Med. 2007 Jun;57(6):1159-67. doi: 10.1002/mrm.21240.
5
A novel end-effector design for robotics in image-guided needle procedures.
Int J Med Robot. 2006 Mar;2(1):91-7. doi: 10.1002/rcs.66.
7
Integrated four dimensional registration and segmentation of dynamic renal MR images.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):758-65. doi: 10.1007/11866763_93.
9
Innovations and challenges in renal cell carcinoma: summary statement from the Second Cambridge Conference.
Clin Cancer Res. 2007 Jan 15;13(2 Pt 2):667s-670s. doi: 10.1158/1078-0432.CCR-06-2231.
10
Evaluation of lung MDCT nodule annotation across radiologists and methods.
Acad Radiol. 2006 Oct;13(10):1254-65. doi: 10.1016/j.acra.2006.07.012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验