Suppr超能文献

用于医学图像分割评估的边界重叠度量族

Family of boundary overlap metrics for the evaluation of medical image segmentation.

作者信息

Yeghiazaryan Varduhi, Voiculescu Irina

机构信息

University of Oxford, Spatial Reasoning Group, Department of Computer Science, Oxford, United Kingdom.

出版信息

J Med Imaging (Bellingham). 2018 Jan;5(1):015006. doi: 10.1117/1.JMI.5.1.015006. Epub 2018 Feb 19.

Abstract

All medical image segmentation algorithms need to be validated and compared, yet no evaluation framework is widely accepted within the imaging community. None of the evaluation metrics that are popular in the literature are consistent in the way they rank segmentation results: they tend to be sensitive to one or another type of segmentation error (size, location, and shape) but no single metric covers all error types. We introduce a family of metrics, with hybrid characteristics. These metrics quantify the similarity or difference of segmented regions by considering their average overlap in fixed-size neighborhoods of points on the boundaries of those regions. Our metrics are more sensitive to combinations of segmentation error types than other metrics in the existing literature. We compare the metric performance on collections of segmentation results sourced from carefully compiled two-dimensional synthetic data and three-dimensional medical images. We show that our metrics: (1) penalize errors successfully, especially those around region boundaries; (2) give a low similarity score when existing metrics disagree, thus avoiding overly inflated scores; and (3) score segmentation results over a wider range of values. We analyze a representative metric from this family and the effect of its free parameter on error sensitivity and running time.

摘要

所有医学图像分割算法都需要进行验证和比较,但目前在成像领域还没有被广泛接受的评估框架。文献中流行的评估指标在对分割结果进行排序的方式上并不一致:它们往往对某一种或另一种分割错误类型(大小、位置和形状)敏感,但没有一个单一指标能涵盖所有错误类型。我们引入了一类具有混合特性的指标。这些指标通过考虑分割区域边界上固定大小邻域内的平均重叠情况来量化分割区域的相似性或差异性。与现有文献中的其他指标相比,我们的指标对分割错误类型的组合更为敏感。我们在精心编制的二维合成数据和三维医学图像的分割结果集合上比较了这些指标的性能。我们表明,我们的指标:(1)能成功地惩罚错误,尤其是区域边界附近的错误;(2)当现有指标不一致时给出较低的相似性分数,从而避免分数过高;(3)在更广泛的值范围内对分割结果进行评分。我们分析了该类指标中的一个代表性指标及其自由参数对错误敏感性和运行时间的影响。

相似文献

1
Family of boundary overlap metrics for the evaluation of medical image segmentation.用于医学图像分割评估的边界重叠度量族
J Med Imaging (Bellingham). 2018 Jan;5(1):015006. doi: 10.1117/1.JMI.5.1.015006. Epub 2018 Feb 19.
2
LinSEM: Linearizing segmentation evaluation metrics for medical images.LinSEM:医学图像分割评估指标的线性化。
Med Image Anal. 2020 Feb;60:101601. doi: 10.1016/j.media.2019.101601. Epub 2019 Nov 9.

引用本文的文献

本文引用的文献

2
The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS).多模态脑肿瘤图像分割基准(BRATS)。
IEEE Trans Med Imaging. 2015 Oct;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. Epub 2014 Dec 4.
4
WESD--Weighted Spectral Distance for measuring shape dissimilarity.WESD--用于测量形状差异的加权光谱距离。
IEEE Trans Pattern Anal Mach Intell. 2013 Sep;35(9):2284-97. doi: 10.1109/TPAMI.2012.275.
10
Hierarchical scale-based multiobject recognition of 3-D anatomical structures.基于层次尺度的 3D 解剖结构的多目标识别。
IEEE Trans Med Imaging. 2012 Mar;31(3):777-89. doi: 10.1109/TMI.2011.2180920. Epub 2011 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验