Holman Hoi-Ying N, Wozei Eleanor, Lin Zhang, Comolli Luis R, Ball David A, Borglin Sharon, Fields Matthew W, Hazen Terry C, Downing Kenneth H
Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA.
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12599-604. doi: 10.1073/pnas.0902070106. Epub 2009 Jun 16.
Determining the transient chemical properties of the intracellular environment can elucidate the paths through which a biological system adapts to changes in its environment, for example, the mechanisms that enable some obligate anaerobic bacteria to survive a sudden exposure to oxygen. Here we used high-resolution Fourier transform infrared (FTIR) spectromicroscopy to continuously follow cellular chemistry within living obligate anaerobes by monitoring hydrogen bond structures in their cellular water. We observed a sequence of well orchestrated molecular events that correspond to changes in cellular processes in those cells that survive, but only accumulation of radicals in those that do not. We thereby can interpret the adaptive response in terms of transient intracellular chemistry and link it to oxygen stress and survival. This ability to monitor chemical changes at the molecular level can yield important insights into a wide range of adaptive responses.
确定细胞内环境的瞬态化学性质可以阐明生物系统适应其环境变化的途径,例如,使一些专性厌氧菌能够在突然暴露于氧气的情况下存活的机制。在这里,我们使用高分辨率傅里叶变换红外(FTIR)光谱显微镜,通过监测活的专性厌氧菌细胞内水中的氢键结构,来持续跟踪细胞化学变化。我们观察到一系列精心编排的分子事件,这些事件与存活细胞中细胞过程的变化相对应,但在未存活的细胞中只有自由基的积累。由此,我们可以根据瞬态细胞内化学来解释适应性反应,并将其与氧应激和存活联系起来。这种在分子水平上监测化学变化的能力可以为广泛的适应性反应提供重要的见解。