Suppr超能文献

头皮脑电图、脑磁图和结构磁共振成像模拟空间谱之间的相似性。

Similarities between simulated spatial spectra of scalp EEG, MEG and structural MRI.

作者信息

Ramon Ceon, Freeman Walter J, Holmes Mark, Ishimaru A, Haueisen Jens, Schimpf Paul H, Rezvanian Elham

机构信息

Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA.

出版信息

Brain Topogr. 2009 Nov;22(3):191-6. doi: 10.1007/s10548-009-0104-7. Epub 2009 Jun 26.

Abstract

Electrical dipoles oriented perpendicular to the cortical surface are the primary source of the scalp EEGs and MEGs. Thus, in particular, gyri and sulci structures on the cortical surface have a definite possibility to influence the EEGs and MEGs. This was examined by comparing the spatial power spectral density (PSD) of the upper portion of the human cortex in MRI slices to that of simulated scalp EEGs and MEGs. The electrical activity was modeled with 2,650 dipolar sources oriented normal to the local cortical surface. The resulting scalp potentials were calculated with a finite element model of the head constructed from 51 segmented sagittal MR images. The PSD was computed after taking the fast Fourier transform of scalp potentials. The PSD of the cortical contour in each slice was also computed. The PSD was then averaged over all the slices. This was done for sagittal and coronal view both. The PSD of EEG and MEG showed two broad peaks, one from 0.05 to 0.22 cycles/cm (wavelength 20-4.545 cm) and the other from 0.22 to 1.2 cycles/cm (wavelength 4.545-0.834 cm). The PSD of the cortex showed a broad peak from 0.08 to 0.32 cycles/cm (wavelength 12.5-3.125 cm) and other two peaks within the range of 0.32 to 0.9 cycles/cm (wavelength 3.125-1.11 cm). These peaks are definitely due to the gyri structures and associated larger patterns on the cortical surface. Smaller peaks in the range of 1-3 cycles/cm were also observed which are possibly due to sulci structures. These results suggest that the spatial information was present in the EEG and MEG at the spatial frequencies of gyri. This also implies that the practical Nyquist frequency for sampling scalp EEGs should be 3.0 cycles/cm and an optimal interelectrode spacing of about 3 mm is needed for extraction of cortical patterns from scalp EEGs in humans.

摘要

垂直于皮质表面排列的电偶极是头皮脑电图(EEG)和脑磁图(MEG)的主要来源。因此,皮质表面的脑回和脑沟结构尤其有可能影响脑电图和脑磁图。通过比较MRI切片中人类皮质上部的空间功率谱密度(PSD)与模拟头皮脑电图和脑磁图的空间功率谱密度对此进行了研究。电活动由2650个垂直于局部皮质表面的偶极源建模。用由51张矢状面MR图像分割构建的头部有限元模型计算产生的头皮电位。在对头皮电位进行快速傅里叶变换后计算功率谱密度。还计算了每个切片中皮质轮廓的功率谱密度。然后对所有切片的功率谱密度进行平均。矢状面和冠状面视图均如此。脑电图和脑磁图的功率谱密度显示出两个宽峰,一个在0.05至0.22周期/厘米(波长20 - 4.545厘米)之间,另一个在0.22至1.2周期/厘米(波长4.545 - 0.834厘米)之间。皮质的功率谱密度显示出一个在0.08至0.32周期/厘米(波长12.5 - 3.125厘米)之间的宽峰以及在0.32至0.9周期/厘米(波长3.125 - 1.11厘米)范围内的另外两个峰。这些峰肯定是由于皮质表面的脑回结构和相关的更大模式。还观察到1 - 3周期/厘米范围内的较小峰,这可能是由于脑沟结构。这些结果表明,在脑回的空间频率处,脑电图和脑磁图中存在空间信息。这也意味着采样头皮脑电图的实际奈奎斯特频率应为3.0周期/厘米,并且从人类头皮脑电图中提取皮质模式需要约3毫米的最佳电极间距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8160/2749166/5111567ddca1/10548_2009_104_Fig1_HTML.jpg

相似文献

1
Similarities between simulated spatial spectra of scalp EEG, MEG and structural MRI.
Brain Topogr. 2009 Nov;22(3):191-6. doi: 10.1007/s10548-009-0104-7. Epub 2009 Jun 26.
2
EEG and MEG coherence: measures of functional connectivity at distinct spatial scales of neocortical dynamics.
J Neurosci Methods. 2007 Oct 15;166(1):41-52. doi: 10.1016/j.jneumeth.2007.06.026. Epub 2007 Jul 6.
3
Cancellation of EEG and MEG signals generated by extended and distributed sources.
Hum Brain Mapp. 2010 Jan;31(1):140-9. doi: 10.1002/hbm.20851.
4
Influence of head models on neuromagnetic fields and inverse source localizations.
Biomed Eng Online. 2006 Oct 23;5:55. doi: 10.1186/1475-925X-5-55.
5
Source cancellation profiles of electroencephalography and magnetoencephalography.
Neuroimage. 2012 Feb 1;59(3):2464-74. doi: 10.1016/j.neuroimage.2011.08.104. Epub 2011 Sep 18.
6
Spatial spectra of scalp EEG and EMG from awake humans.
Clin Neurophysiol. 2003 Jun;114(6):1053-68. doi: 10.1016/s1388-2457(03)00045-2.
7
Linear inverse source estimate of combined EEG and MEG data related to voluntary movements.
Hum Brain Mapp. 2001 Dec;14(4):197-209. doi: 10.1002/hbm.1052.
8
Simultaneous head tissue conductivity and EEG source location estimation.
Neuroimage. 2016 Jan 1;124(Pt A):168-180. doi: 10.1016/j.neuroimage.2015.08.032. Epub 2015 Aug 22.
9
Effects of spatial pattern scale of brain activity on the sensitivity of DOT, fMRI, EEG and MEG.
PLoS One. 2013 Dec 23;8(12):e83299. doi: 10.1371/journal.pone.0083299. eCollection 2013.

引用本文的文献

2
3
Normative brain mapping using scalp EEG and potential clinical application.
Sci Rep. 2023 Aug 18;13(1):13442. doi: 10.1038/s41598-023-39700-7.
5
Systematic Differences Between Perceptually Relevant Image Statistics of Brain MRI and Natural Images.
Front Neuroinform. 2019 Jun 25;13:46. doi: 10.3389/fninf.2019.00046. eCollection 2019.
6
The role of blood vessels in high-resolution volume conductor head modeling of EEG.
Neuroimage. 2016 Mar;128:193-208. doi: 10.1016/j.neuroimage.2015.12.041. Epub 2015 Dec 31.

本文引用的文献

1
Combining fMRI with EEG and MEG in order to relate patterns of brain activity to cognition.
Int J Psychophysiol. 2009 Jul;73(1):43-52. doi: 10.1016/j.ijpsycho.2008.12.019. Epub 2009 Feb 20.
2
Influence of head models on neuromagnetic fields and inverse source localizations.
Biomed Eng Online. 2006 Oct 23;5:55. doi: 10.1186/1475-925X-5-55.
3
Influence of head models on EEG simulations and inverse source localizations.
Biomed Eng Online. 2006 Feb 8;5:10. doi: 10.1186/1475-925X-5-10.
6
Role of soft bone, CSF and gray matter in EEG simulations.
Brain Topogr. 2004 Summer;16(4):245-8. doi: 10.1023/b:brat.0000032859.68959.76.
7
COMPARISON OF SUBCORTICAL, CORTICAL AND SCALP ACTIVITY USING CHRONICALLY INDWELLING ELECTRODES IN MAN.
Electroencephalogr Clin Neurophysiol. 1965 Feb;18:217-28. doi: 10.1016/0013-4694(65)90088-x.
8
Spatial spectra of scalp EEG and EMG from awake humans.
Clin Neurophysiol. 2003 Jun;114(6):1053-68. doi: 10.1016/s1388-2457(03)00045-2.
9
The influence of brain tissue anisotropy on human EEG and MEG.
Neuroimage. 2002 Jan;15(1):159-66. doi: 10.1006/nimg.2001.0962.
10
The conductivity of the human skull: results of in vivo and in vitro measurements.
IEEE Trans Biomed Eng. 2000 Nov;47(11):1487-92. doi: 10.1109/TBME.2000.880100.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验