Suppr超能文献

脑机接口的发展:超越经典运动生理学

Evolution of brain-computer interfaces: going beyond classic motor physiology.

作者信息

Leuthardt Eric C, Schalk Gerwin, Roland Jarod, Rouse Adam, Moran Daniel W

机构信息

Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri 63110, USA.

出版信息

Neurosurg Focus. 2009 Jul;27(1):E4. doi: 10.3171/2009.4.FOCUS0979.

Abstract

The notion that a computer can decode brain signals to infer the intentions of a human and then enact those intentions directly through a machine is becoming a realistic technical possibility. These types of devices are known as brain-computer interfaces (BCIs). The evolution of these neuroprosthetic technologies could have significant implications for patients with motor disabilities by enhancing their ability to interact and communicate with their environment. The cortical physiology most investigated and used for device control has been brain signals from the primary motor cortex. To date, this classic motor physiology has been an effective substrate for demonstrating the potential efficacy of BCI-based control. However, emerging research now stands to further enhance our understanding of the cortical physiology underpinning human intent and provide further signals for more complex brain-derived control. In this review, the authors report the current status of BCIs and detail the emerging research trends that stand to augment clinical applications in the future.

摘要

计算机能够解码大脑信号以推断人类意图,然后通过机器直接实现这些意图,这一概念正成为一种现实的技术可能性。这类设备被称为脑机接口(BCI)。这些神经假体技术的发展可能会对运动障碍患者产生重大影响,因为它们能增强患者与环境互动和交流的能力。研究最多且用于设备控制的皮层生理学是来自初级运动皮层的大脑信号。迄今为止,这种经典的运动生理学一直是证明基于BCI控制潜在功效的有效基础。然而,新兴研究现在有望进一步加深我们对支撑人类意图的皮层生理学的理解,并为更复杂的脑源控制提供更多信号。在这篇综述中,作者报告了脑机接口的现状,并详细阐述了有望在未来扩大临床应用的新兴研究趋势。

相似文献

3
The emerging world of motor neuroprosthetics: a neurosurgical perspective.运动神经假体的新兴世界:神经外科视角
Neurosurgery. 2006 Jul;59(1):1-14; discussion 1-14. doi: 10.1227/01.NEU.0000221506.06947.AC.
7
Brain-computer interfaces in neurological rehabilitation.神经康复中的脑机接口
Lancet Neurol. 2008 Nov;7(11):1032-43. doi: 10.1016/S1474-4422(08)70223-0. Epub 2008 Oct 2.
8
The science of neural interface systems.神经接口系统科学
Annu Rev Neurosci. 2009;32:249-66. doi: 10.1146/annurev.neuro.051508.135241.

引用本文的文献

10
Brain-Computer Interfaces in Neurorecovery and Neurorehabilitation.脑机接口在神经康复和神经修复中的应用。
Semin Neurol. 2021 Apr;41(2):206-216. doi: 10.1055/s-0041-1725137. Epub 2021 Mar 19.

本文引用的文献

1
Electroencephalographic (EEG) control of three-dimensional movement.脑电图(EEG)控制三维运动。
J Neural Eng. 2010 Jun;7(3):036007. doi: 10.1088/1741-2560/7/3/036007. Epub 2010 May 11.
4
Functional network reorganization during learning in a brain-computer interface paradigm.脑机接口范式下学习过程中的功能网络重组
Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19486-91. doi: 10.1073/pnas.0808113105. Epub 2008 Dec 1.
9
Cortical control of a prosthetic arm for self-feeding.用于自主进食的假肢手臂的皮质控制。
Nature. 2008 Jun 19;453(7198):1098-101. doi: 10.1038/nature06996. Epub 2008 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验