Bowman Gordon, Jensvold Zena, Jin Qusheng
Geobiology Group, University of Oregon, Eugene, Oregon, USA.
Environ Microbiol. 2025 Jul;27(7):e70156. doi: 10.1111/1462-2920.70156.
Anaerobic oxidation of methane (AOM) coupled with sulphate reduction (SR) is a crucial microbial process that mitigates methane emissions, a major contributor to climate change. However, the bioenergetics underlying this process remains poorly understood. Here, we present a metabolic model to quantify energy fluxes and conservation in AOM consortia by integrating enzyme-level thermodynamics and kinetics. Unlike previous models that impose artificial constraints on energy conservation kinetics and efficiency, our approach mechanistically predicts ATP yields and energy efficiencies. We show that both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria (SRB) invest energy in substrate activation, synthesising ATP with comparable yields (0.23-0.24 mol ATP per mol methane or sulphate), while achieving remarkable thermodynamic efficiency (~60%). However, ANME exhibit a higher return on investment (ROI, 18%) than SRB (11%) due to more efficient substrate activation. These findings highlight fundamental bioenergetic constraints governing methane oxidation and SR in anoxic environments, enhancing our understanding of how microbial processes regulate methane fluxes in natural ecosystems. By providing a quantitative framework for microbial energy conservation, our study advances biogeochemical modelling and informs strategies for methane mitigation in marine sediments and other anaerobic environments critical to climate regulation.
甲烷厌氧氧化(AOM)与硫酸盐还原(SR)耦合是一个关键的微生物过程,可减少甲烷排放,甲烷是气候变化的主要促成因素。然而,这一过程背后的生物能量学仍知之甚少。在此,我们提出了一个代谢模型,通过整合酶水平的热力学和动力学来量化AOM聚生体中的能量通量和能量守恒。与以往对能量守恒动力学和效率施加人为限制的模型不同,我们的方法从机制上预测了ATP产量和能量效率。我们表明,厌氧甲烷氧化古菌(ANME)和硫酸盐还原细菌(SRB)都在底物激活过程中投入能量,以相当的产量合成ATP(每摩尔甲烷或硫酸盐产生0.23 - 0.24摩尔ATP),同时实现了显著的热力学效率(约60%)。然而,由于底物激活效率更高,ANME的投资回报率(ROI,18%)高于SRB(11%)。这些发现突出了缺氧环境中控制甲烷氧化和硫酸盐还原的基本生物能量学限制,加深了我们对微生物过程如何调节自然生态系统中甲烷通量的理解。通过为微生物能量守恒提供一个定量框架,我们的研究推动了生物地球化学建模,并为海洋沉积物和其他对气候调节至关重要的厌氧环境中的甲烷减排策略提供了信息。
Appl Environ Microbiol. 2022-6-14
Appl Environ Microbiol. 2019-3-22
FEMS Microbiol Ecol. 2025-7-14
Trends Microbiol. 2025-7
Environ Microbiome. 2025-6-17
Glob Chang Biol. 2025-7
Proc Natl Acad Sci U S A. 2023-12-19
Cold Spring Harb Perspect Biol. 2021-5-3
Curr Opin Biotechnol. 2021-2
Microbiol Mol Biol Rev. 2019-7-31