文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过代谢模型探索硫酸盐依赖型厌氧甲烷氧化菌群中的能量守恒

Exploring Energy Conservation in Sulphate-Dependent Anaerobic Methane-Oxidising Consortia Through Metabolic Modelling.

作者信息

Bowman Gordon, Jensvold Zena, Jin Qusheng

机构信息

Geobiology Group, University of Oregon, Eugene, Oregon, USA.

出版信息

Environ Microbiol. 2025 Jul;27(7):e70156. doi: 10.1111/1462-2920.70156.


DOI:10.1111/1462-2920.70156
PMID:40702902
Abstract

Anaerobic oxidation of methane (AOM) coupled with sulphate reduction (SR) is a crucial microbial process that mitigates methane emissions, a major contributor to climate change. However, the bioenergetics underlying this process remains poorly understood. Here, we present a metabolic model to quantify energy fluxes and conservation in AOM consortia by integrating enzyme-level thermodynamics and kinetics. Unlike previous models that impose artificial constraints on energy conservation kinetics and efficiency, our approach mechanistically predicts ATP yields and energy efficiencies. We show that both anaerobic methanotrophic archaea (ANME) and sulphate-reducing bacteria (SRB) invest energy in substrate activation, synthesising ATP with comparable yields (0.23-0.24 mol ATP per mol methane or sulphate), while achieving remarkable thermodynamic efficiency (~60%). However, ANME exhibit a higher return on investment (ROI, 18%) than SRB (11%) due to more efficient substrate activation. These findings highlight fundamental bioenergetic constraints governing methane oxidation and SR in anoxic environments, enhancing our understanding of how microbial processes regulate methane fluxes in natural ecosystems. By providing a quantitative framework for microbial energy conservation, our study advances biogeochemical modelling and informs strategies for methane mitigation in marine sediments and other anaerobic environments critical to climate regulation.

摘要

甲烷厌氧氧化(AOM)与硫酸盐还原(SR)耦合是一个关键的微生物过程,可减少甲烷排放,甲烷是气候变化的主要促成因素。然而,这一过程背后的生物能量学仍知之甚少。在此,我们提出了一个代谢模型,通过整合酶水平的热力学和动力学来量化AOM聚生体中的能量通量和能量守恒。与以往对能量守恒动力学和效率施加人为限制的模型不同,我们的方法从机制上预测了ATP产量和能量效率。我们表明,厌氧甲烷氧化古菌(ANME)和硫酸盐还原细菌(SRB)都在底物激活过程中投入能量,以相当的产量合成ATP(每摩尔甲烷或硫酸盐产生0.23 - 0.24摩尔ATP),同时实现了显著的热力学效率(约60%)。然而,由于底物激活效率更高,ANME的投资回报率(ROI,18%)高于SRB(11%)。这些发现突出了缺氧环境中控制甲烷氧化和硫酸盐还原的基本生物能量学限制,加深了我们对微生物过程如何调节自然生态系统中甲烷通量的理解。通过为微生物能量守恒提供一个定量框架,我们的研究推动了生物地球化学建模,并为海洋沉积物和其他对气候调节至关重要的厌氧环境中的甲烷减排策略提供了信息。

相似文献

[1]
Exploring Energy Conservation in Sulphate-Dependent Anaerobic Methane-Oxidising Consortia Through Metabolic Modelling.

Environ Microbiol. 2025-7

[2]
In situ addition of layered double hydroxides promotes sulfate-dependent anaerobic methane oxidation and microbial community shifts in freshwater-influenced mangroves sediments.

Water Res. 2025-9-1

[3]
Community Structure and Microbial Associations in Sediment-Free Methanotrophic Enrichment Cultures from a Marine Methane Seep.

Appl Environ Microbiol. 2022-6-14

[4]
Methanotrophic Flexibility of 'Ca. Methanoperedens' and Its Interactions With Sulphate-Reducing Bacteria in the Sediment of Meromictic Lake Cadagno.

Environ Microbiol. 2025-7

[5]
Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea.

Appl Environ Microbiol. 2019-3-22

[6]
A ubiquitous and diverse methanogenic community drives microbial methane cycling in eutrophic coastal sediments.

FEMS Microbiol Ecol. 2025-7-14

[7]
Current trends in electromicrobiology of methane oxidation.

Trends Microbiol. 2025-7

[8]
Salinization alters microbial methane cycling in freshwater sediments.

Environ Microbiome. 2025-6-17

[9]
Nitrogen Redox Controls on Greenhouse Gas Production in Yedoma Taliks.

Glob Chang Biol. 2025-7

[10]
Microbially induced precipitation of silica by anaerobic methane-oxidizing consortia and implications for microbial fossil preservation.

Proc Natl Acad Sci U S A. 2023-12-19

本文引用的文献

[1]
A Genome-Scale Metabolic Model of : Assessing Bioenergetics and Thermodynamic Feasibility.

Metabolites. 2022-3-31

[2]
Limited Mechanistic Link Between the Monod Equation and Methanogen Growth: a Perspective from Metabolic Modeling.

Microbiol Spectr. 2022-4-27

[3]
Controls on Interspecies Electron Transport and Size Limitation of Anaerobically Methane-Oxidizing Microbial Consortia.

mBio. 2021-5-11

[4]
Sulfate-dependent reversibility of intracellular reactions explains the opposing isotope effects in the anaerobic oxidation of methane.

Sci Adv. 2021-5-5

[5]
Glycolysis.

Cold Spring Harb Perspect Biol. 2021-5-3

[6]
Modeling of interspecies electron transfer in anaerobic microbial communities.

Curr Opin Biotechnol. 2021-2

[7]
Physiology and Distribution of Archaeal Methanotrophs That Couple Anaerobic Oxidation of Methane with Sulfate Reduction.

Microbiol Mol Biol Rev. 2019-7-31

[8]
Methyl (Alkyl)-Coenzyme M Reductases: Nickel F-430-Containing Enzymes Involved in Anaerobic Methane Formation and in Anaerobic Oxidation of Methane or of Short Chain Alkanes.

Biochemistry. 2019-4-5

[9]
Microbial interactions in the anaerobic oxidation of methane: model simulations constrained by process rates and activity patterns.

Environ Microbiol. 2019-1-22

[10]
A biochemical framework for anaerobic oxidation of methane driven by Fe(III)-dependent respiration.

Nat Commun. 2018-4-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索