Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, D-35043 Marburg, Germany.
Curr Opin Microbiol. 2011 Jun;14(3):292-9. doi: 10.1016/j.mib.2011.03.003. Epub 2011 Apr 12.
Anaerobic oxidation of methane (AOM) with sulfate is apparently catalyzed by an association of methanotrophic archaea (ANME) and sulfate-reducing bacteria. In many habitats, the free energy change (ΔG) available through this process is only -20 kJ/mol and therefore AOM with sulfate reduction generating life-supporting ATP is predicted to operate near thermodynamic equilibrium (ΔG=0 kJ/mol). On the basis of meta-genome sequencing and enzyme studies, it has been proposed that AOM in ANME is catalyzed by the same enzymes that catalyze CO2 reduction to CH4 in methanogenic archaea. Here, this proposal is reviewed and evaluated in terms of the process thermodynamics, kinetics, and enzyme reversibilities. Currently, there is no evidence for the presence of the gene that encodes methylene-tetrahydromethanopterin reductase in ANME, one of the central enzymes in the CO2 to CH4 pathway. However, all of the remaining enzymes do appear to be present and, with the exception of a coenzyme M-S-S-coenzyme B heterodisulfide reductase, all of these enzymes have been confirmed to catalyze reversible reactions.
甲烷的厌氧氧化(AOM)与硫酸盐显然是由产甲烷古菌(ANME)和硫酸盐还原菌的联合作用来催化的。在许多生境中,通过这个过程获得的自由能变化(ΔG)仅为-20 kJ/mol,因此预测 AOM 与硫酸盐还原生成支持生命的 ATP 将接近热力学平衡(ΔG=0 kJ/mol)。基于元基因组测序和酶研究,有人提出,ANME 中的 AOM 是由催化产甲烷古菌中 CO2 还原为 CH4 的相同酶来催化的。在这里,根据过程热力学、动力学和酶的可逆性对这一假设进行了回顾和评估。目前,没有证据表明 ANME 中存在编码亚甲基四氢甲烷喋呤还原酶的基因,该基因是 CO2 到 CH4 途径中的一个核心酶。然而,所有其他的酶似乎都存在,除了辅酶 M-S-S-辅酶 B 异二硫化物还原酶外,所有这些酶都被证实能催化可逆反应。