Suppr超能文献

基于成像技术的脂质体稳定性和循环研究模型。

An imaging-driven model for liposomal stability and circulation.

机构信息

Department of Biomedical Engineering, University of California, 451 East Health Sciences Drive, Davis, California 95616, USA.

出版信息

Mol Pharm. 2010 Feb 1;7(1):12-21. doi: 10.1021/mp900122j.

Abstract

Simultaneous labeling of the drug compartment and shell of delivery vehicles with optical and positron emission tomography (PET) probes is developed and employed to inform a hybrid physiologically based pharmacokinetic model. Based on time-dependent estimates of the concentration of these tracers within the blood pool, reticuloendothelial system (RES) and tumor interstitium, we compare the stability and circulation of long-circulating and temperature-sensitive liposomes. We find that rates of transport to the RES for long-circulating and temperature-sensitive particles are 0.046 and 0.19 h(-1), respectively. Without the application of exogenous heat, the rates of release from the long-circulating and temperature-sensitive particles circulating within the blood pool are 0.003 and 0.2 h(-1), respectively. Prolonged lifetime in circulation and slow drug release from liposomes result in a significantly greater drug area under the curve for the long-circulating particles. Future studies will couple these intrinsic parameters with exogenous heat-based release. Finally, we develop a transport constant for the transport of liposomes from the blood pool to the tumor interstitium, which is on the order of 0.01 h(-1) for the Met-1 tumor system.

摘要

同时用光学和正电子发射断层扫描(PET)探针标记药物隔室和载体壳,开发并用于为混合生理基于药代动力学模型提供信息。基于这些示踪剂在血液池、网状内皮系统(RES)和肿瘤间质内的浓度的时变估计,我们比较了长循环和温度敏感脂质体的稳定性和循环。我们发现长循环和温度敏感颗粒向 RES 的转运速率分别为 0.046 和 0.19 h(-1)。没有施加外源性热的情况下,长循环和在血液池循环的温度敏感颗粒从脂质体中释放的速率分别为 0.003 和 0.2 h(-1)。在循环中的寿命延长和从脂质体中缓慢释放药物导致长循环颗粒的药物 AUC 显著增加。未来的研究将把这些内在参数与基于外源性热的释放结合起来。最后,我们为脂质体从血液池向肿瘤间质的转运开发了一个转运常数,对于 Met-1 肿瘤系统,该常数约为 0.01 h(-1)。

相似文献

1
An imaging-driven model for liposomal stability and circulation.
Mol Pharm. 2010 Feb 1;7(1):12-21. doi: 10.1021/mp900122j.
2
Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery.
Acc Chem Res. 2009 Jul 21;42(7):881-92. doi: 10.1021/ar8002442.
3
Long-circulating liposomes.
Crit Rev Ther Drug Carrier Syst. 1994;11(4):231-70.
4
Enhanced in vivo bioluminescence imaging using liposomal luciferin delivery system.
J Control Release. 2010 Jan 25;141(2):128-36. doi: 10.1016/j.jconrel.2009.08.029. Epub 2009 Sep 11.
5
Improved Tumor Uptake by Optimizing Liposome Based RES Blockade Strategy.
Theranostics. 2017 Jan 1;7(2):319-328. doi: 10.7150/thno.18078. eCollection 2017.
8
A generic Zr labeling method to quantify the in vivo pharmacokinetics of liposomal nanoparticles with positron emission tomography.
Int J Nanomedicine. 2017 Apr 20;12:3281-3294. doi: 10.2147/IJN.S134379. eCollection 2017.
9
[PEG-liposome in DDS and clinical studies].
Nihon Rinsho. 1998 Mar;56(3):632-7.
10
A modular labeling strategy for in vivo PET and near-infrared fluorescence imaging of nanoparticle tumor targeting.
J Nucl Med. 2014 Oct;55(10):1706-11. doi: 10.2967/jnumed.114.141861. Epub 2014 Jul 24.

引用本文的文献

3
Drug transport kinetics of intravascular triggered drug delivery systems.
Commun Biol. 2021 Jul 28;4(1):920. doi: 10.1038/s42003-021-02428-z.
4
Research tools for extrapolating the disposition and pharmacokinetics of nanomaterials from preclinical animals to humans.
Theranostics. 2019 May 18;9(11):3365-3387. doi: 10.7150/thno.34509. eCollection 2019.
5
Pharmacokinetic and Pharmacodynamic Properties of Drug Delivery Systems.
J Pharmacol Exp Ther. 2019 Sep;370(3):570-580. doi: 10.1124/jpet.119.257113. Epub 2019 Mar 5.
6
"One-Pot" Fabrication of Highly Versatile and Biocompatible Poly(vinyl alcohol)-porphyrin-based Nanotheranostics.
Theranostics. 2017 Sep 5;7(16):3901-3914. doi: 10.7150/thno.20190. eCollection 2017.
7
Physiologically Based Pharmacokinetic (PBPK) Modeling of Pharmaceutical Nanoparticles.
AAPS J. 2017 Jan;19(1):26-42. doi: 10.1208/s12248-016-0010-3. Epub 2016 Nov 10.
8
Elastin-like polypeptides: Therapeutic applications for an emerging class of nanomedicines.
J Control Release. 2016 Oct 28;240:93-108. doi: 10.1016/j.jconrel.2015.11.010. Epub 2015 Nov 11.
9
The pharmacokinetics of Zr-89 labeled liposomes over extended periods in a murine tumor model.
Nucl Med Biol. 2015 Feb;42(2):155-63. doi: 10.1016/j.nucmedbio.2014.09.001. Epub 2014 Sep 28.
10
Accumulation, internalization and therapeutic efficacy of neuropilin-1-targeted liposomes.
J Control Release. 2014 Mar 28;178:108-17. doi: 10.1016/j.jconrel.2014.01.005. Epub 2014 Jan 13.

本文引用的文献

1
A review of the applications of physiologically based pharmacokinetic modeling.
J Pharmacokinet Biopharm. 1979 Apr;7(2):127-45. doi: 10.1007/BF01059734.
5
Whole-body physiologically based pharmacokinetic models.
Expert Opin Drug Metab Toxicol. 2007 Apr;3(2):235-49. doi: 10.1517/17425255.3.2.235.
6
Computational modeling to predict effect of treatment schedule on drug delivery to prostate in humans.
Clin Cancer Res. 2007 Feb 15;13(4):1278-87. doi: 10.1158/1078-0432.CCR-06-1610.
7
PET kinetic analysis--compartmental model.
Ann Nucl Med. 2006 Nov;20(9):583-8. doi: 10.1007/BF02984655.
9
Phase I trial of doxorubicin-containing low temperature sensitive liposomes in spontaneous canine tumors.
Clin Cancer Res. 2006 Jul 1;12(13):4004-10. doi: 10.1158/1078-0432.CCR-06-0226.
10
Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers.
J Natl Cancer Inst. 2006 Mar 1;98(5):335-44. doi: 10.1093/jnci/djj070.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验