Department of Oncology, 153 Central Hospital, Zhengzhou 450042, PR China.
Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA.
Theranostics. 2017 Sep 5;7(16):3901-3914. doi: 10.7150/thno.20190. eCollection 2017.
Nanoparticle-based theranostic agents have emerged as a new paradigm in nanomedicine field for integration of multimodal imaging and therapeutic functions within a single platform. However, the clinical translation of these agents is severely limited by the complexity of fabrication, long-term toxicity of the materials, and unfavorable biodistributions. Here we report an extremely simple and robust approach to develop highly versatile and biocompatible theranostic poly(vinyl alcohol)-porphyrin nanoparticles (PPNs). Through a "one-pot" fabrication process, including the chelation of metal ions and encapsulation of hydrophobic drugs, monodispersenanoparticle could be formed by self-assembly of a very simple and biocompatible building block (poly(vinyl alcohol)-porphyrin conjugate). Using this approach, we could conveniently produce multifunctional PPNs that integrate optical imaging, positron emission tomography (PET), photodynamic therapy (PDT), photothermal therapy (PTT) and drug delivery functions in one formulation. PPNs exhibited unique architecture-dependent fluorescence self-quenching, as well as photodynamic- and photothermal- properties. Near-infrared fluorescence could be amplified upon PPN dissociation, providing feasibility of low-background fluorescence imaging. Doxorubicin (DOX)-loaded PPNs achieved 53 times longer half-life in blood circulation than free DOX. Upon irradiation by near infrared light at a single excitation wavelength, PPNs could be activated to release reactive oxygen species, heat and drugs simultaneously at the tumor sites in mice bearing tumor xenograft, resulting in complete eradication of tumors. Due to their organic compositions, PPNs showed no obvious cytotoxicity in mice via intravenous administration during therapeutic studies. This highly versatile and multifunctional PPN theranostic nanoplatform showed great potential for the integration of multimodal imaging and therapeutic functions towards personalized nanomedicine against cancers.
基于纳米粒子的治疗诊断一体化试剂在纳米医学领域已成为一种新的范例,它将多种模式的成像和治疗功能集成在一个单一的平台中。然而,这些试剂的临床转化受到制造复杂性、材料的长期毒性以及不利的生物分布的严重限制。在这里,我们报告了一种非常简单和强大的方法来开发高度多功能和生物相容性的治疗诊断一体化聚(乙烯醇)-卟啉纳米粒子(PPN)。通过“一锅法”的制造工艺,包括金属离子的螯合和疏水性药物的包封,通过非常简单和生物相容性的构建块(聚(乙烯醇)-卟啉缀合物)的自组装,可以形成单分散纳米粒子。通过这种方法,我们可以方便地制备多功能 PPN,将光学成像、正电子发射断层扫描(PET)、光动力疗法(PDT)、光热疗法(PTT)和药物输送功能集成在一个制剂中。PPN 表现出独特的结构依赖性荧光自猝灭以及光动力和光热特性。近红外荧光可以在 PPN 解组装时放大,为低背景荧光成像提供了可行性。载多柔比星(DOX)的 PPN 在血液循环中的半衰期比游离 DOX 长 53 倍。在近红外光单激发波长的照射下,PPN 可以同时在荷瘤小鼠的肿瘤部位激活释放活性氧、产热和药物,导致肿瘤完全消除。由于它们的有机组成,PPN 在治疗研究中通过静脉注射在小鼠中没有明显的细胞毒性。这种高度多功能和多功能的 PPN 治疗诊断一体化纳米平台显示出了在个性化癌症纳米医学中整合多种模式成像和治疗功能的巨大潜力。